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Abstract

There is substantial spatial heterogeneity in household carbon emissions. I leverage
movers in two decades of administrative Decennial Census and American Community Survey
data to estimate place effects – the amount by which carbon emissions change for the same
household living in different places – for almost 1,000 cities and roughly 61,500 neighborhoods
across the US. I estimate that place effects account for 14-23 percent of overall heterogeneity.
A change in neighborhood-level place effects from one standard deviation above the mean to
one below would reduce household carbon emissions from residential energy and commuting
by about 40 percent. JEL Codes: H41, Q40, R20.
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1 Introduction

Increased carbon and other greenhouse gas emissions since the onset of the industrial revolution
have caused global average temperatures to rise by over 1°C (1.8°F) relative to preindustrial levels
(NASA 2020). In 2015, the United States signed the Paris Accord, a global agreement aimed
at mitigating the potential damages from climate change by limiting overall warming to below
2°C. In search of opportunities for decarbonization, researchers and policymakers have pointed to
substantial spatial heterogeneity in household carbon emissions, suggesting that perhaps higher-
emissions places could adopt features of lower-emissions places, such as density and high-quality
public transportation infrastructure, in order to lower household carbon emissions (e.g. Jones
and Kammen 2014; International Energy Agency 2021; Pomponi et al. 2021; Wagner 2021).

However, differences in mean carbon emissions across places reflect a combination of
local amenities, household characteristics, and taste-based sorting. The relative contributions
of these pieces is a central determinant of whether place-based interventions that change urban
form would lead to significant reductions in carbon emissions. For instance, if places with large
single-family homes and car-oriented transportation infrastructure are high-emissions because
the people who live there dislike multi-family homes and public transit, then deregulating zoning
or building new rail lines would have little impact on household emissions. Conversely, if the
lack of denser housing and transit options is a constraint on household choices, rather than a
reflection of their preferences, then interventions that change these local public amenities have
the potential to decrease carbon emissions for many households at once.

In this paper, I decompose variation in household carbon emissions into a component
driven by household characteristics and a component driven by place effects – i.e., the amount
by which the same household’s carbon emissions would differ from place to place due to differences
in the underlying features of those places. To do so, I construct a longitudinal panel of residential
and transportation energy use for over one million individuals from 20 years of restricted-access
Decennial Census and American Community Survey (ACS) microdata (U.S. Census Bureau
2000,2010; 2001-2019). The longitudinal nature of these data allows me to link individual survey
respondents over time and across places. I use a mover design, examining changes to household
carbon emissions for over 250,000 movers across roughly 1,000 cities and 61,500 neighborhoods,
to estimate place effects and their contribution to heterogeneity in carbon emissions.

I begin my analysis by documenting observational patterns of city and neighborhood-
level variation in household carbon emissions in my sample. While previous work has shown
evidence of substantial variation in household carbon emissions (e.g. Jones and Kammen 2014;
Ummel 2014; Green and Knittel 2020), the level of geographic granularity in publicly available
data has limited researchers to predicting neighborhood-level carbon emissions from national
data projected onto local place and household characteristics. In contrast, detailed geographic
identifiers in the administrative Census Bureau microdata make it possible to directly estimate
neighborhood-level means. I estimate that on average, households living in cities with emissions
one standard deviation above the mean emit 50 percent more than those living in cities one
standard deviation below the mean. Similarly, households in neighborhoods one standard de-
viation above the mean emit, on average, just under twice as much as those in neighborhoods
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one standard deviation below the mean. Accounting for variation driven by observed household
characteristics such as household size and income decreases the dispersion across place estimates
by less than 10 percent.

The heterogeneity that remains after accounting for observable household characteristics
reflects some combination of unobserved household characteristics and causal place effects. Un-
observed household characteristics might include preferences for spending time in a private yard
versus a public park, risk tolerances for biking versus driving, sensetivities to hot or cold temper-
atures, or simply environmental consciousness. Place effects could stem from a variety of local
amenities and supply-side factors that determine patterns of household energy use. They could
reflect aspects of urban form such as public transportation, bike and pedestrian infrastructure,
highway networks, density, or zoning regulations. They could also be driven by natural amenities
such as climate. Lastly, they could arise from supply-side factors that determine fuel shares and
electricity emissions factors, both of which shift the amount of carbon emitted for a given level of
energy use.1 I show how place effects can be interpreted through the lens of a consumer energy
demand model in which average energy demand, energy demand elasticities, energy prices, and
average emissions factors vary across places.

My empirical strategy uses movers to estimate the contributions of place effects and
household characteristics to heterogeneity in household carbon emissions. The mover design
accounts for unobserved differences between households by comparing carbon emissions for the
same household living in different places. Consider the following thought experiment. Imag-
ine two households identical in every observable way - same household size, same income, same
education levels, etc. One lives in a dense, urban neighborhood well-served by public transit,
while the other lives in a car-dependent suburb with large homes. The urban household likely
generates lower carbon emissions. But is that because the place itself determines emissions, or
because the urban household has different unobservable characteristics, like stronger environ-
mental preferences, that led it to select into the lower emissions neighborhood? If I observe the
same household move between neighborhoods, any resulting change in that household’s emis-
sions can no longer be attributed to fixed unobserved household preferences or characteristics,
and I can use those changes to infer differences in place effects. In order for estimates from the
mover design to be unbiased, the central assumption is that mover destinations are uncorrelated
with changes to unobserved determinants of household carbon emissions. A crucial advantage
of undertaking this analysis with Census Bureau microdata is that I observe, and can control
for, many time-varying household characteristics that could correlate with both potential emis-
sions and destination choices and thereby confound estimates of place effects. In other words,
the identifying strategy does not allow for households to move in response to a sudden shift in
environmental preferences, but it does allow for households to move in response to changes in
income, the number of children, and age-based or lifecycle preferences, because I observe these
characteristics.

1. For instance, a household in an area with predominantly coal-fired power plants could emit significantly
more carbon than a household with identical electricity consumption in an area powered mainly by natural gas or
renewable sources. Similarly, many households in the Northeast use heating oil, in part due to legacy equipment
choices, which produces substantially more carbon dioxide for the same amount of heating than natural gas.
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For the first set of results, I use an event study to estimate how much carbon emissions
change after households move, as a share of the mean difference between their origin and des-
tination. Intuitively, if spatial heterogeneity is driven in part by underlying differences between
places, when a household moves, I should see its emissions shift towards the mean of its new
location. The larger the shift, the more important the role of place. I find that, on average, when
households move to a new city, their carbon emissions change by about 85 percent of the mean
difference between origin and destination cities. Sorting plays a larger role in neighborhood-level
variation than in variation across cities, but the role of place remains meaningful; when house-
holds move to a new neighborhood, their carbon emissions change by 53-60 percent of the mean
difference between their origin and destination neighborhoods.

I explore several dimensions of heterogeneity, finding that my estimates remain stable
when restricting the sample to households without significant changes in observable character-
istics, when splitting the sample by duration between observations, and when grouping movers
based on the magnitude of origin-destination differences in observational mean emissions. The
consistency of estimates across these analyses suggests limited systematic sorting of households to
places, as such sorting would manifest in a non-linear relationship between observational means
and household emissions. In the absence of systematic sorting, the event study estimates can
be interpreted as causal estimates of the effect on emissions of any household moving between
any pair of places. While the heterogeneity analysis lends support to this interpretation, the
additional assumption of no systematic sorting is quite strong, particularly at the neighborhood
level. Under the weaker baseline assumptions, the event study estimates yield unbiased pre-
dictions about how household carbon emissions change for any set of observed moves. This is
valuable, as it makes it possible to calculate the carbon emissions externality of policies or regu-
latory restrictions that drive existing patterns of household migration, for instance, policies that
restrict housing supply in on-average lower emissions cities.

In the second set of results, I estimate the full non-parametric distribution of household
and place effects using a two-way fixed effects model, and then do a variance decomposition
to estimate the share of overall heterogeneity explained by each component. This approach
allows for unrestricted patterns of sorting, but this weaker assumption comes at the cost of
limited mobility bias (Andrews et al. 2008): estimates of place effects are noisy because they
can be derived from a small number of movers to and from each place. This imprecision creates
an upward bias in the naive plug-in variance estimate relative to the true variance of place
effects, even if estimates of place effects themselves are unbiased. I account for this upward
bias using the heteroskedasticity-robust “leave-out” estimator proposed by Kline, Saggio, and
Sølvsten (2020). I find low correlations between unobserved household and place effects, even
at the neighborhood level. This suggests that sorting on unobserved household characteristics
contributes to differences between places through “segregation” of households, but not in a way
that is systematically correlated with unobserved neighborhood attributes. City effects explain
14-16 percent of overall heterogeneity, while neighborhood effects explain roughly 22-23 percent
of overall heterogeneity. Climate, electricity emissions factors, and energy prices together account
for over half of the CBSA variance component. At the neighborhood level, controlling for these
factors decreases the place share by less than half, to about 15 percent. While this leaves the
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majority of overall heterogeneity to other factors, my estimates nevertheless imply the potential
for considerable reductions to household carbon emissions from interventions that decrease place
effects: I estimate that if a neighborhood went from having a place effect one standard deviation
above the national mean to having a place effect one standard deviation below the national mean,
household emissions for residents of that neighborhood would decrease by about 40 percent.

I characterize low- and high-emissions neighborhoods by presenting correlations between
estimated tract effects and observable tract-level characteristics. I characterize local amenities
using observable characteristics from within the Census Bureau microdata, public-use data on
climate and electricity, and commercial data from Walk Score, a private company that generates
estimates of the walk-ability, transit-ability, and bike-ability of every address in the US (Walk
Score 2021). These data lend unique insight into highly granular variation in neighborhood
characteristics. I find that the correlations between amenities and neighborhood place effects for
the most part mirror the relationships in the observational data. Low-emissions places have clean
electricity and mild climates, and they have amenities characteristic of urban areas. Among the
local amenities, density and average home size, proximity to principal cities, and the quality of
local bike infrastructure appear to have the most explanatory power.

I conclude my analysis by examining how household carbon emissions would differ if some
households were exposed to place effects neighborhoods more urban than the one they currently
live in. If suburban and rural households lived in a place with the average place effect of the
principal city closest to them – a scenario that captures in spirit how households’ exposure to
place effects might shift in response to regulations that limit urban sprawl and encourage up-
zoning and infill development – I estimate that their emissions from residential energy use and
commuting would decrease by about 15 percent. To put this estimate into context, the Inflation
Reduction Act, which was signed into law in August 2022 and is the largest Federal effort to
address climate change to date, is projected to decrease economy-wide emissions in 2030 by an
additional 15 percent relative to projected reductions from 2005 levels under business as usual.2

In many ways, the basic physical design and urban fabric of cities, suburbs, and towns cre-
ates the foundational patterns of transportation and residential energy use. Decades of housing,
transportation, and land use policies shape these features. The wide distribution of place effects
estimated in this paper implies that there may be potential for “place-based climate policies”
– policies that aim to reduce household carbon emissions from residential and transportation
energy by changing the underlying characteristics of the places people live in – to lead to mean-
ingful reductions in carbon emissions. While this paper does not estimate the causal drivers of
place effects, the correlational analysis presented here, and many observational and model based
studies (e.g. Shammin et al. 2010; Timmons, Zirogiannis, and Lutz 2016; Ribeiro, Rybski, and
Kropp 2019; Pomponi et al. 2021; Ko 2013) provide some hypotheses. Estimating causal rela-
tionships between specific amenities and place effects using credible exogenous variation remains

2. Three separate efforts to model IRA reductions have been commonly cited by advocates and lawmakers. The
Rhodium Group estimates that under the IRA emissions will fall 31-44 percent from 2005 levels by 2030, with
24-34 percent reductions under business as usual (Larsen et al. 2022). For the same time frame, Energy Innovation
estimates 37-41 percent reductions under the IRA and 24% under business as usual (Mahajan et al. 2022), and
The REPEAT project estimates 42 percent reductions under IRA and 17 percent under business as usual (Jenkins
et al. 2022).
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an important direction for future research. One might have worried about whether the settings
in which such studies can be done are too selected; what if the households that reside in places
that make changes to local infrastructure or regulatory restrictions are different from households
in places that do not make those changes? The core results of this paper suggest that variation
in place effects drives a meaningful share of differences in emissions between places, mitigating
some of these concerns about external validity.

This paper makes several contributions. A large body of work in labor and urban eco-
nomics finds significant wage, employment, and productivity benefits from density and integrated
land use and transit policies (Tsivanidis 2022; Allen and Arkolakis 2022; Duranton and Puga
2020). These studies suggest that spatial equilibria are inefficient due to agglomeration economies
and other externalities, but have largely not considered the carbon emissions externality in their
analysis. The theoretical justification for using place-based policies in cases where agglomeration
economies and other local externalities exist is well-established. Federal intervention can correct
inefficient market equilibria and improve welfare by supplementing local government provision
of under-provided amenities, offering a “big push” towards an optimal equilibrium when several
exist, fostering the growth of productive areas and agglomeration externalities, or insuring res-
idents against place-based shocks (Glaeser and Gottlieb 2008; Kline 2010; Kline and Moretti
2014; Glaeser 2013; Austin, Glaeser, and Summers 2018). However, the empirical evidence on
the efficacy of place-based policies is mixed. While some studies find that tax incentives target-
ing areas with lower employment can improve welfare (Busso, Gregory, and Kline 2013; Austin,
Glaeser, and Summers 2018; Bilal 2023), others suggest that spatial policies promoting growth
in less developed areas may have negligible or even negative aggregate effects on productivity
and welfare (Kline and Moretti 2013; Gaubert 2018). Duranton and Venebles (2021) highlight
the challenges in evaluating place-based policies, including in the context of urban transport,
housing, and infrastructure. The welfare implications of place-based climate policies would cru-
cially depend on their design, implementation details, costs, and household preferences for local
amenities; a welfare analysis is beyond the scope of this paper. Carbon emissions are a canonical
example of a global externality, but many of the theoretical justifications for place-based policy
outlined above could be relevant, given the observed relationship between carbon emissions and
factors of urban form such as density and urban transport. This, together with evidence from
this paper that places play an important role in driving household carbon emissions, suggests
that that further research is warranted.

Methodologically, I build on a large literature in labor examining wage inequality across
firms, and a growing literature that uses mover designs to estimate place effects on other indi-
vidual outcomes, e.g. nutritional choices (Allcott et al. 2019), health outcomes and health care
utilization (Eid et al. 2008; Finkelstein, Gentzkow, and Williams 2016; 2021), intergenerational
mobility (Chetty and Hendren 2018), and wages (De la Roca and Puga 2017; Card, Rothstein,
and Yi 2024). This paper is the first to use a mover design to study household energy use and
carbon emissions, yielding new insights into spatial heterogeneity in these outcomes. Previous
work has highlighted the consequences of spatial heterogeneity in carbon emissions for allocative
efficiency (Glaeser and Kahn 2010; Colas and Morehouse 2022) as well as for distributional im-
pacts and the political economy of hypothetical climate policies (Cronin, Fullerton, and Sexton
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2019; Sallee 2019; Green and Knittel 2020), but these papers did not examine the causal role
of places in their findings. Several papers in the literature have generated estimates of het-
erogeneous energy demand parameters, but they have necessarily done so in spatially limited
and sector-specific contexts (Auffhammer and Rubin 2024; Gillingham 2014; Nowak and Savage
2013; Spiller et al. 2014). The estimates generated in this paper on the relative roles of place
effects versus household sorting could assist in resolving some of the challenges identified in the
aforementioned literature around distributional impacts and political economy. For instance, if
lock-in of urban form limits the share of household carbon emissions that could be targeted by
pricing instruments in the short-to-medium term, estimates of the share of spatial heterogeneity
driven by place effects could inform decisions around how much to redistribute carbon dividends
when using geography as a tag. And as highlighted previously, they raise an important question
as to whether place-based climate policies could serve as a welfare-improving complement to
traditional instruments for addressing this global externality.

2 Data and Stylized Facts about Carbon Emissions in the US

75 percent of US greenhouse gas emissions are from burning fossil fuels. Of these, 20 percent are
from residential energy use (including electricity), and another 20 percent are from light duty (i.e.
passenger) vehicles (U.S. Energy Information Administration 2020b). The focus of this analysis
is on carbon emissions from these two sectors; they are a meaningful portion of overall emissions,
and they are the forms of emissions that are most directly related to locked-in characteristics
of urban form. In the remainder of this section, I first discuss my data and the construction
of relevant analysis variables, and then provide some descriptive evidence on heterogeneity in
carbon emissions in my sample.

2.1 Data and Key Variables

I build a 20-year panel of individual and household-level data using the 2000 restricted access
Decennial Census long form and the 2001-2019 American Community Survey (U.S. Census
Bureau 2000,2010; 2001-2019). The 2000 Decennial Census long form consists of a stratified
random sample covering one in six households in the US. After 2000, the ACS replaced the
Decennial Census long form in order to gather detailed information on individuals and households
more regularly. The ACS is a stratified random sample covering roughly 0.4 percent of households
in 2001-2005, and roughly one percent of households in each year after 2005 (U.S. Census Bureau
2014). I link individuals across surveys using Protected Identification Keys, which are unique
person identifiers assigned by the US Census Bureau based on names, addresses, dates of birth,
other household members, and social security numbers (when available).3

3. Neither the Decennial Census nor the ACS ask respondents for their social security numbers. Wagner and
Layne (2014) use data with social security numbers to show that the error rate in assigning Protected Identification
Keys without social security numbers is below one percent. See Bond et al. (2014) for detailed discussion of the
assignment algorithm used by the US Census Bureau. Assignment success rates vary across demographic groups
– in particular white and higher income individuals are more likely to be successfully assigned a Protected
Identification Key – but for all demographic subgroups the success rate is greater than 85 percent. See Bond
et al. (2014) for additional discussion of the variation in assignment rates across population subgroups.
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For every individual in the panel, I observe measures of residential and transportation
energy use, and a rich set of demographic, household, workplace, and home characteristics,
including detailed geographic identifiers. I supplement the Decennial Census and ACS with
several external sources of data in order to convert energy expenditures to energy services and
emissions, and to characterize places.

2.1.1 Geographic Units of Analysis

Throughout the study, I analyze spatial heterogeneity at two levels of geographic granularity
which roughly represent a city or labor market and a neighborhood.

My first geographic unit of analysis is a Core Based Statistical Area (CBSA). CBSAs are
designated by the Office of Management and Budget and cover the population of metropolitan
and micropolitan areas in the US. Each CBSA is a set of contiguous counties with strong com-
muting ties and at least one urban core area of at least 10,000 people. In addition to formally
designated CBSAs, I define state-level residual CBSAs from unassigned rural areas. My second
geographic unit of analysis is a census tract. Census tracts are county subdivisions that typi-
cally cover contiguous areas, have populations of 1,200-8,000 people (4,000 on average), and are
delineated with boundaries that follow identifiable physical features. They are designed to be
relatively stable, but are split or merged every ten years if populations exceed or fall below the
1,200-8,000 window.4

2.1.2 Carbon Emissions

My primary outcome is metric tons of carbon emissions from residential energy and passenger
vehicle use, which together account for roughly one third of US greenhouse gas emissions. I
implement the main analysis at the household level: carbon emissions are given by household
residential emissions plus the sum of individual commuting emissions over all individuals in the
household.

I estimate carbon emissions from residential energy use from household-reported expen-
ditures on electricity, natural gas, and other home heating fuels in the last year, combined with
external data on local annual retail prices and fuel emissions factors. For electricity, I calculate
county-level average prices using data from the Annual Electric Power Industry Report (Form
EIA-861, Energy Information Administration 2020) . This report contains sales, revenues, and
total customers for every major utility in the US, by sector and state. It also delineates counties
contained in each utility’s service territory. I calculate county-level retail electricity prices us-
ing customer-weighted average prices (revenue divided by sales) across all utilities with service
territories containing the county, and I compute household electricity consumption by dividing
reported expenditures by my price estimates. I then assign households to one of 12 National
Electric Reliability Council (NERC) regions using a tract-level crosswalk from the Infrastruc-
ture Foundation-Level Database (U.S. Department of Homeland Security 2021), and compute

4. Census geographic definitions vary over time to account for changes in administrative boundaries and pop-
ulations. To ensure that I don’t erroneously identify people who live in places where the designation changed as
movers, I use the 2000-2010 census block concordance to assign 2010 geographic definitions to all years in the
data, combining blocks in cases where they correspond to a single 2000 block.
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emissions using the average annual emissions rates assigned to each region by the Emissions
& Generation Resource Integrated Database (U.S. Environmental Protection Agency 2021a).
For natural gas and other home heating fuels, I obtain average retail prices at the state level
from the State Energy Data System (U.S. Energy Information Administration 1960-2019) . If a
household reports non-zero expenditures on “other home heating fuels,” I impute the fuel used
from its answer to the question “What was the primary fuel used for home heating?” Finally,
I obtain fuel emissions factors from the Emission Factors for Greenhouse Gas Inventories (U.S.
Environmental Protection Agency 2018).

I estimate carbon emissions from transportation energy from the sum of individually-
reported commuting behavior within a household.5 I estimate commute distance using the
geodesic distance between home and place of work census blocks, and I estimated commute
speed from estimated mileage and reported time-length of commute. I estimate gasoline usage
using annual national average fuel economy from the U.S. Environmental Protection Agency
and Energy (2020), accounting for the fact that in general fuel economy is roughly 30 percent
higher on highways than in cities. Finally, I estimate the number of annual commutes using
reported weeks worked last year and hours worked last week, and convert annual gallons of
gasoline to carbon emissions using the motor gasoline emissions factor from the State Energy
Data System (U.S. Energy Information Administration 1960-2019). Individuals who commute
by rail, subway, streetcar, bus, bike, or walk, and individuals who work from home are assigned
an emissions factor based on their mode of transit and data from the National Transit Database
(Federal Transit Administration 2002-2019, see Appendix A.1 for more details). Altogether,
this portion of the outcome captures variation in carbon emissions driven by commute lengths,
number of commutes, and mode of transit. I examine the sensitivity of my results to using the
National Household Travel Survey (NHTS, Federal Highway Administration 2022) to predict
heterogeneous fuel economy and non-commute miles from household and geographic character-
istics available in both the Census and NHTS. This is not my baseline approach, as it infers how
much of variation in vehicle fleets and fuel economy observed in the NHTS is driven by individual
preferences vs. place-based factors from cross-sectional variation.6

2.1.3 Individual and Household Characteristics

Throughout the analysis, I use demographic and household characteristics to control for variation
driven by observable characteristics. Specifically, I control for age, education (completion of a
bachelor’s degree), sex, race and ethnicity, household income (from salaries and wages, interest,
social security, supplemental security, public assistance, retirement, and self employment), house-
hold size, number of children, and homeowner status. I aggregate individual-level demographics
to the household level by taking the mean across individuals within a household.

5. Commuting accounts for about 28 percent of all vehicle-miles travelled, and 39 percent of person-miles
travelled on transit systems (U.S. Department of Transportation 2015), which means I underestimate carbon
emissions from overall personal vehicle use for most people in my sample.

6. Place-based factors that contribute to variation in vehicle fleets could include social norms, perceptions of
safety (e.g. if everyone around you is driving a big car it is safer for you to drive a big car; certain types of cars
may be able to handle adverse weather better), road widths, ease of parking, etc.
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I also observe whether a household lives in a detached single-family home, the number
of rooms in a home, and the number of vehicles in the household. These characteristics are
intermediate outcomes, which directly affect carbon emissions. They also very likely reflect a
combination of household preferences and place characteristics – many places impose restrictions
on multi-unit homes and/or minimum lot sizes, and lack transportation options for households
without a car, so household choices are likely to differ from place to place depending on these
constraints. Therefore, I do not treat these variables as observable household characteristics
when estimating place and household effects, but I do use them later to explore correlates of
unobserved place and household heterogeneity.

It is not obvious whether homeownership should be considered an observable household
characteristic or part of a place effect. Homeownership rates vary dramatically across CBSAs
(Raetz 2021; Mateyka and Mazur 2021), and housing regulations can price people out of home-
ownership. In these cases, treating homeownership as an intermediate outcome seems appro-
priate. On the other hand, the choice to become a homeowner simultaneously impacts where
people live and factors related to their carbon emissions. For instance, homeowners may want
extra space for potential family expansion or space-intensive leisure activities, or may choose
homeownership in order to be able to install solar panels and have a place to charge their electric
vehicle. To be conservative and err on the side of finding a smaller role of place effects, I treat
homeowner status as an observable household characteristic in my baseline analysis.

2.1.4 Place Characteristics and Amenities

I supplement Census micro-data with several external sources of data to characterize amenities
at the block, tract, city and regional level. I focus on amenities that are directly relevant to
energy consumption and carbon emissions in the residential and transportation sectors.

To capture variation in climate, I use data on annual heating degree days (HDDs) and
cooling degree days (CDDs) at the CONUS Climate Division level (National Oceanic and Atmo-
spheric Administration 2020). The National Oceanic and Atmospheric Administration (NOAA)
divides the contiguous states into a total of 344 climate divisions based on regional differences in
climates within states. Degree days represent the annual sum of the daily difference between that
day’s temperature and 65°F, and are meant to quantify the heating and cooling requirements of
a place.

To account for neighborhood-level variation in transportation and leisure amenities, I use
data from Walk Score, a private company that generates estimates of the walk-ability, transit-
ability, and bike-ability of every address in the US (Walk Score 2021).7 Walk Score® rankings
capture proximity to different commercial amenities such as grocery stores, as well as street
characteristics such as block lengths and intersection widths. Bike ScoreTM indices capture
characteristics that make biking more or less accessible, such as the existence of bike lanes, road
connectivity, and hilliness. Transit Score® ratings capture proximity to different types of transit,
and the frequency and connectivity of nearby options. For transit, I also observe the number of
bus routes and rail routes within a half-mile. Other than route counts, each score is an index

7. Data can be viewed at www.walkscore.com, and was provided by Redfin Real Estate.
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from 0-100. I assign over six million unique Walk Score points reflecting data from early 2020,
one to every populated census block in the US, by matching census block centroids to the nearest
Walk Score latitude-longitude coordinate.

Finally, I estimate density at the tract-level using 2010 census block-level information
on area and population. I define urban tracts as those that are characterized as urban by the
US Census Bureau and surpass the density threshold set for urban centers by the EU-OECD
definition of a functional urban area (Dijkstra, Poelman, and Veneri 2019).8 I define suburban
tracts as those contained within a CBSA but not designated as urban. Tracts outside of CBSAs
are classified rural.

2.1.5 Sample Restrictions

I restrict the analysis to individuals who are at least 18 years of age, who are not identified as
the householder’s child or grandchild, and who are not missing any of the outcome variables or
key explanatory or control variables described above. I also impose several additional restric-
tions related to energy variables. I exclude from the sample households for which residential
energy costs are included in rent or gas costs are included in electricity bills, because I don’t
observe expenditures in those cases. I discuss this sub-sample of households and the potential
impact of its exclusion in detail in Appendix A. I also exclude individuals in households in which
residential energy use is top coded or whose commute time is top coded, as the top-coding will
obfuscate changes in individual consumption for the highest demand individuals. Lastly, I ex-
clude individuals if the sum of their household residential energy expenditures is zero, if they are
in the bottom one percent of non-zero residential energy cost observations, or if they are in the
top one percent of commute distance observations, as these outliers more likely reflect survey
misreporting. My full sample consists of all individuals who meet these restrictions across the 48
continental states and the District of Columbia – almost 17 million people across over 12 million
households (Table 1, column (1)). I use the full sample to estimate observational geographic and
household heterogeneity.

I construct a panel sample by restricting the full sample to individuals for whom I have
at least two observations in which they did not indicate that they had moved within the last
year. This restriction on very recent migration ensures that I am estimating household carbon
emissions at the correct location, as households report their residential energy expenditures over
the past year.9 The panel sample consists of 1,097,000 people across 916,000 households (Table 1,
column (2)).

Finally, I impose two additional sample restrictions which are necessary for the implemen-
tation of my empirical strategy. First, because residential energy is determined at the household
level, and place effects are identified from the variation in outcomes of movers between places,
I restrict the panel sample to only households consisting of the same full sample individuals
across observations. This ensures that changes in emissions across observations are not driven
by changes in the composition of adults in the household. Importantly, this approach does retain

8. This threshold is 1,500 people per square kilometer.
9. This restriction applies to all ACS years. The 2000 Decennial Census, asked whether respondents had moved

within the last five years. Since this is significantly more restrictive, I don’t drop these individuals.
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households where children are born or grow up and move out between observations, as indi-
viduals under 18 are not part of the full sample. Second, I restrict CBSAs and tracts to the
“leave-out connected set” – the network of CBSAs or tracts that remain connected to each other
by at least one mover after I drop all the observations of any given household (see Appendix
B for an illustration). I do this after dropping tracts with fewer than 10 full sample household
observations. The leave-out connected sets are constructed separately at the CBSA and tract
level. This means it is possible for a household to be in the CBSA panel but not the tract panel.
The leave-out restriction drops a negligible share of (residual) CBSAs and roughly 12 percent of
(disproportionately rural) tracts, yielding approximately a 5 percent reduction in the number of
households in the sample (Table 1, columns (3) and (4)).

CBSA movers are households in the CBSA panel that live in different CBSAs across
observations (93,000 households, column (5)), and similarly, tract movers are households in the
tract panel that live in different tracts (within or across CBSAs) across observations (248,000
households, column (6)). The CBSA panel, tract panel, CBSA movers, and tract movers make
up my four primary analysis samples.

2.2 Sample Statistics

Table 1 shows sample statistics for the full sample, unrestricted panel sample, the two geograph-
ically restricted panel samples, and the two mover samples.

A comparison across the samples yields three main take-aways. First, households in
the panel are on average more likely to be white, have higher income, and are more likely to
be homeowners than households in the full sample (columns (1) and (2)). This reflects known
heterogeneity in Protected Identification Key assignment rates within the Census Bureau (Bond
et al. 2014). The panel sample is also seven percentage points less likely to live in an urban
tract, nine percentage points more likely to live in a detached home, and two percentage points
more likely to commute by car. The appreciable drop in transit score when going from the
full sample to the panel is consistent with these differences in urbanity, and is likely in part
driven by disproportionately dropping households in the densest areas when dropping households
whose electricity and/or heating is included in rent, as discussed earlier and also in Appendix
A. Second, further restricting the baseline panel to the CBSA and tract panels (columns (3) and
(4)) does not meaningfully change the distribution of demographics, (intermediate) outcomes,
or place characteristics. Finally, movers (columns (5) and (6)) tend to be younger, more college
educated, and have higher income than both stayers and the full sample. Movers also are more
likely than stayers to live in urban tracts, less likely than stayers to live in detached homes, and
they have higher rates of electric heating and lower emissions from residential energy, making
them more comparable to the full sample on all of these dimensions.
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Table 1: Sample Statistics

Panel Sample Mover Sample

(1) (2) (3) (4) (5) (6)
Full All CBSA Tract CBSA Tract

A: Demographics

College 0.25 0.25 0.25 0.25 0.35 0.31
Age 44 46 46 46 43 43
White 0.82 0.89 0.89 0.90 0.89 0.88
Female 0.48 0.48 0.48 0.48 0.45 0.47
Household Income 103,400 114,100 114,200 114,900 116,100 115,400
Household Kids 1.0 1.0 1.0 1.0 1.0 1.0
Household Size 2.8 2.9 2.9 2.9 2.8 2.9
Homeowner 0.75 0.85 0.85 0.85 0.72 0.73

B: Outcomes

Tons CO2 15.1 16.1 16.0 16.1 15.0 15.0
Tons CO2 - Residential 11.9 12.8 12.8 12.8 11.8 11.9
Tons CO2 - Commute 3.3 3.3 3.3 3.3 3.3 3.1

C: Intermediate Outcomes

Detached Home 0.72 0.81 0.81 0.81 0.73 0.73
Use Electricity Only 0.30 0.24 0.24 0.24 0.30 0.28
Commute by Car 0.94 0.96 0.96 0.96 0.95 0.96
Commute Minutes 25.1 24.9 24.9 24.8 26.0 25.6

D: Place Characteristics

Urban 0.29 0.22 0.23 0.22 0.20 0.25
Suburban 0.62 0.62 0.63 0.63 0.68 0.67
Rural 0.09 0.15 0.15 0.15 0.11 0.08
Walk Score 27.2 23.0 23.1 22.4 23.0 25.2
Bike Score 35.9 33.4 33.4 33.1 34.1 35.4
Transit Score 9.0 6.7 6.7 6.3 6.7 7.9
N Bus Routes 1.6 1.1 1.1 1.0 1.2 1.3
N Rail Routes 0.15 0.09 0.09 0.07 0.10 0.10
Cooling Degree Days 1,359 1,213 1,215 1,205 1,356 1,335
Heating Degree Days 4,376 4,824 4,815 4,851 4,494 4,518

N People 16,900,000 1,097,000 1,073,000 1,042,000 107,000 290,000
N Households 12,600,000 916,000 860,000 833,000 93,000 248,000
CBSAs 1,000 1,000 1,000 1,000 1,000 1,000
Tracts 71,500 70,000 70,000 61,500 54,500 61,500

Note: Column (1) shows statistics for the full sample. Column (2) shows statistics for the panel sample, with
no restrictions that individuals be in the same household or live in a connected geography. Columns (3) and (4)
show the panel samples restricted to individuals in a consistent household overtime and the CBSA and tract
leave-one-out connected sets, respectively. Columns (5) and (6) show statistics for the CBSA and tract mover
samples. All sample statistics are weighted using Census sample weights. Sample counts are unweighted and
rounded according to Census Bureau disclosure rules.
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Table 2: Panel Statistics

Panel Sample Mover Sample

CBSA Tract CBSA Tract

A: Sample Characteristics

First Observed in 2000 0.10 0.10 0.16 0.14
Years Between Observations 7.9 7.9 10.3 9.8

B: Demographic Characteristics

Age First Observed 42.0 42.0 37.1 37.2
Share with Large Change in Income 0.28 0.28 0.45 0.41
Share with Change in N Kids 0.45 0.45 0.55 0.55
Change in N Kids -0.12 -0.12 0.08 0.08
Share Rent to Own 0.11 0.11 0.26 0.26

C: Mover Place Changes

∆ Walk Score -7.0 -7.1
∆ Bike Score -4.2 -4.0
∆ Transit Score -2.3 -2.7
∆ N Bus Routes -0.57 -0.56
∆ N Rail Routes -0.04 -0.04
∆ Tract Share Detached Home 0.05 0.05

% Moves Urban-to-Urban 0.08 0.14
% Moves Urban-to-Suburban 0.17 0.14
% Moves Suburban-to-Suburban 0.44 0.46

∆ Cooling Degree Days 214 136
∆ Heating Degree Days -331 -188

N People 1,073,000 1,042,000 107,000 290,000
N Households 860,000 833,000 93,000 248,000
CBSAs 1,000 1,000 1,000 1,000
Tracts 70,000 61,500 54,500 61,500

Note: Columns (1) and (2) show panel statistics for the CBSA and tract panel samples. Columns (3) and (4)
show statistics panel statistics as well as summary measures of mobility patterns for the CBSA and tract mover
samples. All sample statistics are weighted using census sample weights. Sample counts are unweighted and
rounded according to Census Bureau disclosure rules.

Overall, a little under 80 percent of household carbon emissions in my sample are from
residential energy, and a little over 20 percent are from commuting.10 Close to three quarters
of the sample lives in a detached, single family home, a vast majority of the sample commutes

10. Household carbon emissions from residential and transportation energy are roughly evenly split (U.S. En-
ergy Information Administration 2020b). Given that commuting makes up about 30% of transportation energy
emissions, we would expect a slightly higher than 3:1 ratio of residential to commuting energy. My estimates
appear to overstate residential energy use relative to commuting by a few percentage points at most.
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by car, and on average households live within half a mile of only one bus route and only 0.1 rail
routes.

Table 2 shows additional statistics for the panel samples. I observe the vast majority of
households in the panel sample exactly twice, with on average 8-10 years in between observations.
Movers tend to be younger than stayers the first time I observe them, and are much more likely
to have had a child, experience a large change in real household income11, or transition from
renting to owning their home. Households tend to move to places with higher shares of detached
single-family homes and worse non-car transportation amenities. The majority of moves are
from urban to urban tracts, urban to suburban tracts, or suburban to suburban tracts. Finally,
consistent with secular trends of mobility in the US, households generally move to warmer places.
For additional comparisons of movers vs. stayers, estimates of the likelihood of moving given
shocks to household income, number of children, or changes in homeownership, and the full set
of transition probabilities across urban, suburban, and rural places, see Appendix Table G.3,
Table G.4, and Table G.5 respectively.

2.3 Observational Heterogeneity

Carbon emissions from residential energy and commuting vary immensely across individuals in
the full sample (Appendix Figure G.1). This variation is strongly correlated with both geographic
and household attributes. At the regional level, carbon emissions vary with climate and with
the emissions intensity of local fuel sources. At the more local level, many have observed a
relationship between emissions and local amenities that characterize urban form, such as local
public transit, bike infrastructure, green space, and density.(Ou et al. 2013; Philips, Anable, and
Chatterton 2022).

Figure 1 presents average household carbon emissions across urban, suburban, and ru-
ral neighborhoods. Households residing in suburban and rural areas have substantially higher
emissions than those living in urban areas. While those differences could, in theory, result from
sorting based on observable household characteristics such as college education, race and ethnic-
ity, household income, or number of children, among others (Appendix Figure G.2), controlling
for observable household characteristics only marginally reduces the differences between rural,
suburban, and urban areas. There is some sorting of higher-emissions households to suburban
and rural areas and lower-emissions households to urban areas, but even after accounting for
these differences, households in suburban tracts still emit over 20 percent more per year than
observationally similar households in urban tracts, while households in rural tracts emit about
50 percent more.

11. I define a large change in income as a greater than 0.5 (in absolute value) change in log income. This
approximates a 50 percent increase/decrease in income, and corresponds to about the top quarter in absolute
income change in my panel sample.

15



Figure 1: Household Carbon Emissions in Urban, Suburban, and Rural Places
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Note: This figure shows estimates of household carbon emissions by urbanity. Estimates are derived from
regressions of log carbon emissions (in metric tons) on indicators for urban, suburban, and rural tracts, with
year fixed effects. The specification with controls additionally includes age, gender, race, education, household
size, number of children, and homeowner status. I define urban tracts according to Dijkstra, Poelman, and
Veneri 2019. I define suburban tracts as non-urban tracts within a Core-Based Statistical Area (CBSA). I define
rural tracts as those outside CBSAs. Mean household carbon emissions are precisely estimated and statistically
different from one another. The unconditional regression has an R2 of 0.11; the conditional regression has an R2

of 0.29.

To examine spatial heterogeneity in more detail I estimate unconditional and conditional
tract-level means, µj , using an ordinary least squares regression of log of household carbon
emissions onto place fixed effects, year fixed effects τt, and in the conditional regression, individual
and household observable characteristics Xit.

lnCO2it = µj(i,t) +Xitβ + τt + εit (1)

I use an Empirical Bayes “shrinkage estimator” to adjust the estimates for statistical noise
(see Appendix C for details). In practice, the distributions and relevant moments are almost iden-
tical for the adjusted and unadjusted estimates. Figure 2 presents the adjusted conditional and
unconditional distributions of µ̂j . I estimate that households living in neighborhoods one stan-
dard deviation above the mean emit on average approximately 1.9 times more than those living
in neighborhoods one standard deviation below the mean, or 1.8 times more after accounting for
differences in observable characteristics. For the remainder of this paper, I refer to means condi-
tional on observable characteristics as “observational means”, following the terminology used by
Abaluck et al. (2021).
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Figure 2: Heterogeneity in Tract-Level Carbon Emissions
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Note: This figure shows kernel density estimates, using a Gaussian kernel function, of tract-level observational
mean emissions. The distributions are censored at the top and bottom 1% of observations in order to abide by
Census Disclosure Avoidance rules. The dotted gray line labeled “Without Controls” corresponds to the
distribution of log CO2 conditional on year fixed effects only, and has a standard deviation of 0.33, while the
solid line labeled "With Controls" conditions on observable household characteristics, and has a standard
deviation of 0.30. Both distributions are de-meaned to match the model with controls. Observable
characteristics include age, gender, race, ethnicity, education, home owner status, household income, household
size, and number of children.

The remaining heterogeneity in observational means reflects some combination of place-
based characteristics and unobserved household characteristics. To illustrate this, I rewrite
Equation 1 as a two-way fixed effects model

lnCO2it = αi + ψj +Xitβ + τt + εit (2)

where ψj represents the place-based characteristics and αi represents the unobserved, fixed,
household characteristics. Comparing Equation 1 and Equation 2 highlights the bias that can
arise when inferring place effects from observational means, as µj = ψj + E[αi|i ∈ j]. In
other words, observational means reflect a combination of place effects and an average over the
unobserved characteristics of the residents of a place.

The primary objective of this paper is to disentangle these components and quantify the
extent to which heterogeneity in household carbon emissions is driven by unobserved household
characteristics and preferences, and how much is driven by causal place effects, i.e. the amount
by which the same household’s carbon emissions would differ from place to place due to the
underlying features of each place, holding household characteristics fixed. This motivates the
mover design, which leverages this exact variation.
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3 Model

In the previous section, I demonstrated how a two-way fixed effects model can be used to miti-
gate biases that arise when making inferences based on observational means. To provide further
insight into the model, I now illustrate how it relates to a standard way of modeling consumer
energy demand, and discuss the interpretation of place and household effects.

Consider a household, i, living in place, j, that consumes quantity Q of energy in the
form of four categories of fuels, f . In the residential sector, it can consume electricity (e), natural
gas (n), and other heating fuels (o). In the transportation sector, it can consume motor gasoline
(m).12

Average demand aj , price elasticities of demand ρfj , and prices P fj are permitted to vary
by place. Place-based differences in average energy demand and in price elasticities of demand
could stem from a range of fixed and malleable characteristics of places. These characteristics
include climate, local public goods and urban form (e.g. density, public transit, pedestrian and
bike infrastructure, proximity to highways and availability of parking, and proximity to leisure
and commercial amenities), and regulatory characteristics (e.g. zoning restrictions that change
the size and density of homes, and building codes that change energy efficiency requirements or
eliminate natural gas hook ups). All of these features could potentially shift energy demand,
both on average and in slope.

In addition to place-based characteristics, demand also depends on observable fixed and
time varying household characteristics (such as age, household size, and income) Xit, individual
fixed unobserved determinants of demand (such as a person’s intrinsic risk tolerance for biking
on shared roads, aversion to public transit vs. traffic, or relative enjoyment of spending time
in their own back yard vs. a public park) αi, individual time-varying unobserved determinants
of demand (perhaps, an increased willingness to bike after reading the latest Intergovernmental
Panel on Climate Change report) εit, and national annual variation τt. Taken together, household
demand for residential and transportation energy is given by:

lnQit = aj +
∑
f∈F

ρfj · lnP
f
j +Xitβ + τt + αi + εit (3)

If all households within a place used the same proportion of fuel types, it would be simple
to express the above equation, with log carbon emissions as the outcome, in terms of a place-
based average emissions factor φ̄j , and to in turn rewrite that expression as the two-way fixed

12. Electric vehicles are a negligible share of driving in my sample time frame. If someone has an electric vehicle,
I over-estimate their emissions, because the electricity they use to charge their vehicle is included in residential
energy (if they charge at home) but I also assign them gasoline emissions. As electric vehicles (EVs) become a
larger share of the market, observing household vehicle choices, and the place-based role of EV charging networks
on these choices, will be critical for future research.
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effects model defined in the previous section:

lnCO2it = ln(φ̄jQit)

= ln φ̄j + aj +
∑
f∈F

ρfj · lnP
f
j︸ ︷︷ ︸

ψj

+Xitβ + τt + αi + εit (4)

In this simplified setting, place effects ψj capture the combination of place-based variation in five
key factors: average energy demand, fuel price elasticities, fuel prices, electricity emissions fac-
tors, and fuel shares. In reality, fuel shares vary not only across places but also across households.
For instance, some states and municipalities are attempting to ban natural gas connections for
new construction (O’Brien 2023; Cornfield 2023), but even if natural gas is available as an op-
tion, some households may still opt to fully electrify their homes, while others may have a strong
preference for cooking on gas stoves.

In Appendix D, I examine how the interpretation of the two-way fixed effects model is
affected when fuel shares are allowed to vary across individuals. The more complex model includes
a term that captures the interaction between fuel emissions factors and a household’s fuel shares
relative to the place-based average. Because electricity emissions factors vary across places,
a household that disproportionately uses electricity will experience a larger drop in emissions
when moving from a place with relatively high emissions electricity to a place with relatively
clean electricity, compared to the average household. This lack of separability implies that there
is some inherent mis-specification in the two-way fixed effects model in this setting.

The model makes two additional simplifications. First, place effects are assumed to be
fixed, implying that any time variation, including changes in prices, is absorbed in the place
effects, which reflect average differences between places over the sample time frame. Second,
while the model allows price elasticities of demand to vary across places, it does not allow
for them to systematically vary across households. For example, the model does not allow
for different elasticities between high and low-income households. Allowing for heterogeneity
in demand elasticities across household characteristics would introduce additional interaction
terms in the error, as elasticities would be interacted with place-specific prices. Together, this
interaction along with the interaction between household fuel shares and place-specific electricity
emissions factors, motivate treating the errors as heteroskedastic.

4 Empirical Strategy

My empirical strategy uses movers to estimate place effects and their contribution to spatial
heterogeneity in carbon emissions. The intuition behind the mover design is the following:
Suppose high-emissions places are high-emissions because of causal place effects – for example,
because there are no alternatives to commuting other than by car, or because zoning regulations
impose constraints on minimum home sizes and density. If so, there would be households that live
in high-emissions places for work, or to be near family or near other amenities they enjoy, which
may otherwise make lower-emissions residential and transportation choices but are unable to. If
those households move from an on-average high-emissions place to an on-average low-emissions
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place where lower-emissions alternatives become available to them, their carbon emissions should
decrease. Conversely, if spatial heterogeneity is driven by strong preferences, then households
currently living in detached single-family homes and commuting by car would continue to do so
even given alternate options, and moving from on average high to low-emissions places should
have little effect on household carbon emissions.

I use the mover design to estimate two versions of a heterogeneity decomposition of
household carbon emissions. I begin with an event study, which, under strong assumptions,
characterizes the share of differences between places attributable to place effects, inferred from
movers’ changes in emissions relative to origin-destination mean differences. Under weaker as-
sumptions, the event study serves as additional descriptive evidence and model validation for
the second decomposition, as well as unbiased prediction of how carbon emissions will change
for the set of observed moves. I then estimate the non-parametric distribution of household and
place effects and decompose overall heterogeneity into variance components. In the following
subsections, I first discuss modeling and identifying assumptions, and then I describe each of
these decompositions in more detail.

4.1 Main Assumptions

My empirical strategy at its foundation pairs a two way fixed effect model with a mover design.
In order for estimates from this approach to be unbiased, three assumptions need to hold: (1)
additive separability of place effects, or constant effects, (2) non-persistence of outcomes, and
(3) exogenous mobility, or conditional orthogonality. I discuss each below.

Assumption 1: Additive separability of place effects, or constant effects.

A core modeling assumption of the two-way fixed effect design is that the outcome – log
carbon emissions – is additively separable in household and place effects. The log specification
is statistically appealing as it reflects the approximate log-normality of the household carbon
emissions distribution (Figure G.1). It is also conceptually appealing, as it implies that place
effects increase and decrease carbon emissions proportionally by the same amount for everyone,
which aligns with many potential mechanisms through which place effects could arise. For
example, it is natural to model climate as scaling residential heating or cooling needs up or
down by the same factor for all households, regardless of their baseline energy consumption.
If density drives place effects, it is reasonable to expect denser places to decrease the size of
homes (and therefore residential energy requirements) or the length of commutes (and therefore
transportation energy requirements) by the same factor for all households. Similarly, an increase
in transportation alternatives to cars might decrease the share of trips taken by car for all
households proportionally.

Nevertheless, the two-way fixed effects model imposes a substantial restriction: it does
not allow for heterogeneous treatment effects or match effects. Heterogeneous place effects could
arise in various scenarios. For instance, a new public transit option might significantly reduce
emissions for relatively low emissions households while barely affecting high-emissions house-
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holds’ behavior. Paired with changes in density, this could even produce divergent effects if
high emissions individuals find themselves idling in traffic more due to increased congestion.
Alternatively, heterogeneous place effects might arise if low emissions households make the same
consumption choices wherever they live, while high emissions households respond strongly to
changes in amenities. Moreover, Section 3 reveals that there is an interaction between house-
holds’ fuel shares and local emissions factors – a household that prefers to use electricity for
heating will see a larger drop in emissions when moving to an area with cleaner electricity than a
household that prefers natural gas heating, all else equal. This interaction introduces a degree of
misspecification into the two-way fixed effect model, rendering it an approximation. The critical
question is whether households systematically sort into locations based on this (or any other)
interaction. As long as they do not, the mover design will continue to yield unbiased estimates
of average place effects.

To rule out selection on heterogeneous effects, I follow Card, Heining, and Kline (2013)
and test whether moves from a low-emissions place to a high-emissions place and moves from
high-emissions place to a low-emissions place are associated with equal and opposite changes in
household carbon emissions. To see why symmetry rules out selection on heterogeneous effects,
consider differences in potential outcomes across an origin o and destination d, allowing now for
there to be an interaction η(αi, ψj) between person and place types:

E[CO2it(d)]− E[CO2it(o)] = (ψd − ψo) + η(αi, ψd)− η(αi, ψo)

As long as:
η(αh, ψd)− η(αh, ψo) 6= η(αl, ψd)− η(αl, ψo) (5)

this type of interaction, paired with selection, would lead to asymmetries between changes in
household carbon emissions for moves to higher on-average places vs. moves to lower on-average
places. Note that condition (5) holds for a broad class of functions, including the simplest
interaction, η = αi · ψj , since αi · (ψd − ψo) 6= αj · (ψd − ψo) ∀i 6= j, o 6= d.13 Returning to an
earlier example, suppose place effects are due to a public transit option that only low-emissions
households use. Suppose also, that households that wish to use public transit disproportionately
move to places where it is available, whereas households who don’t want to use public transit
disproportionately move to places where it is not available; the subsequent decline in emissions
for households moving from a high-emissions place to a low-emissions place will be larger than
the increase in emissions for households moving in the opposite direction.

I group places into four quartiles based on observational averages of carbon emissions,
and I estimate household carbon emissions for each origin-destination quartile pair, adjusting for
annual trends and controlling for demographic and household characteristics. Figure 3 displays
the results. For parsimony, the figure shows only moves from the lowest quartile emissions places
to all four quartiles and vice versa, as well as moves within first-quartile places and moves within
fourth-quartile places as bounds in gray.

13. More generally, Equation 5 implies that ∂η
∂α

[ψd − ψo] 6= 0, and in turn, ∂2η
∂α∂ψ

6= 0. In words, the symmetry
check rules out any interaction in which the change between places grows or shrinks with household type.
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Figure 3: Changes in household CO2 when moving across quartiles of Mean CO2
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Note: This figure shows average household carbon emissions for movers across places classified into quartiles
based on their observational mean carbon emissions in the full sample. Symmetric responses to moves in
opposite directions provide support for the log-linear two-way fixed effect model of household carbon emissions
because they are consistent with place effects entering log carbon emissions additively. This figure shows only
the subset of moves to and from the lowest-emissions places (quartile 1), as well as moves within the
highest-emissions places (quartile 4). Estimates are conditional on year fixed effects and the standard set of
household characteristics used throughout this analysis. Estimates are weighted by Census sample weights.

First and foremost, this figure shows that moves across quartiles lead to equal and oppo-
site changes in household carbon emissions. This symmetry suggests that the log-linear two-way
fixed effect model of household carbon emissions is a good approximation for the role of place
effects and alleviates concern about selection on heterogeneous treatment effects. Second, this
figure provide evidence of selection at the tails, particularly for tract-level moves – households
that move from the lowest quartile to a different place in the lowest quartile have lower emissions
on average than households that move between the lowest quartile and any of the three higher
quartiles. Similarly, households that move between places in the fourth quartile have higher
emissions than those that move between the fourth and the first, though the difference at the
top is less pronounced. Finally, note that households that move between tracts within the same
quartile experience a small increase in emissions, consistent with the general trend of households
moving to on-average higher emissions places.

Assumption 2: Nonpersistent outcomes.

As highlighted above, I identify relative place effects from pairwise comparisons of house-
hold carbon emissions between origin and destination,

E[CO2it(d)|αi, Xit, τt]− E[CO2it(o)|αi, Xit, τt] = ψd − ψo
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This expression holds for any two households moving between o and d, which means that
it cannot differ from household to household as a result of differences in their residential histories.
In other words, the expected change for two households moving between the same origin and des-
tination should be the same even if one of the households previously lived in Houston while the
other previously lived in New York. Note, however, that the nonpersistent outcomes assumption
does not rule out that the place someone was born and raised may have a persistent effect on
their preferences and carbon emissions. Because I include household effects in the model, and
only include individuals over the age of 18 in the sample, any persistent effect of place of birth
and upbringing on carbon emissions will be captured by the household fixed effect.

Assumption 3: Exogenous mobility, or conditional orthogonality.

When the first two assumptions hold, the model serves as a reasonable approximation to
the real world, and consequently random variation in exposure to place identifies place effects.
Thus the final, identifying, assumption necessary for this empirical approach to be unbiased is
that moves are conditionally exogenous; in other words, household destination choices are not
related to changes in unobserved determinants of carbon emissions.

E[εit|αi, ψj(i,t), Xit, τt] = 0 (6)

It is important to emphasize here that the two-way fixed effects model allows for a broad
set of sorting behaviors. First, it allows for unrestricted sorting of households on fixed or time-
varying observable characteristics. A key advantage of the Census microdata is the ability to
observe numerous time-varying household characteristics that could potentially bias the estimates
if unobserved. Factors such as entering middle age, having children, experiencing a change in
income, or becoming a homeowner are all associated with an increase in energy consumption
generally (Appendix Figure G.2), and the latter three also significantly increase the probability
of moving (Appendix Table G.4). However, this endogeneity does not bias the estimates, as I
observe age, household size, number of children, household income, and home-owner status, and
am therefore able to separate the effect of these characteristics on household emissions from their
influence on a household’s choice of new city or neighborhood.

Second, and crucially, the two-way fixed effect model allows for unrestricted sorting on
fixed unobservable characteristics. In other words, if households have heterogeneous, but fixed,
preferences for neighborhood amenities – for instance, if someone has a particular distaste for
public transit, a strong preference for large homes, or a particular love for walking or biking –
and their choice of what neighborhood to live in reflects those preferences, estimates of place
effects are unbiased by this selection because household fixed effects capture these unobserved
but fixed determinants of carbon emissions. The ability to account for, and allow unrestricted
sorting on, these time invariant unobserved preferences is a critical benefit of the pairing of the
two way fixed effect model and mover estimation strategy.

Note also that the fact that I might never observe a very high emissions household move
to a very low emissions place is not a problem if you accept Assumption 1, that places do not
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have heterogeneous effects on different types of households. It is sufficient to have a connected
network of pairwise moves between places in order to identify relative place effects, and household
effects are identified relative to other households within the same place. Consequently, even
if I observe only lower-emissions households moving from Pittsburgh to New York, and only
higher emissions-households moving from Pittsburgh to Houston, a comparison of household
emissions within Pittsburgh combined with the observed changes to household emissions at their
destinations identify the relevant household and place effects. I have already provided some
evidence that place effects do not appear to be heterogeneous in the symmetry check shown in
Figure 3. I will provide additional evidence of this when I examine heterogeneity in the event
study results, in Section 5.1. If this model assumption is violated and there is selection on
heterogeneous treatment effects, then the place effects I estimate should be thought of as local
average treatment effects for the population moving to those places.

Thus, the main threat to identification stems from the possibility that moves correspond
to changes in unobserved preferences – either through an idiosyncratic shock or via preference
“drift”, i.e., a gradual evolution in preferences that is not captured by aging. Revisiting the
example in the previous paragraph, this would reflect a scenario in which the two households
in Pittsburgh were initially similar, but then one household becomes increasingly concerned
about climate change and makes lifestyle choices to reduce its carbon emissions, subsequently
relocating to New York to facilitate these choices, while the other household’s preferences remain
unchanged. In this example, the first household’s carbon emissions would have changed to some
extent even if it had stayed in Pittsburgh, and that portion of the change would be incorrectly
attributed to the New York place effect.

A standard approach for ruling out endogenous moves is to test for parallel trends between
movers and stayers prior to the move. Unfortunately, I observe the majority of my sample only
twice, which makes this impossible. Instead, I use data from the Panel Study of Income Dynamics
(Lyubich 2024), over the same sample period, and assess whether movers in the PSID exhibit
any changes to energy expenditures (defined as monthly spending on electricity, home heating,
and gasoline) prior to their move. I do not know where households move from or to, so I look
separately at households whose energy expenditures are higher after moving and those whose
energy expenditures are lower after moving, controlling for household size, income, householder
age, and year fixed effects. I find no evidence of pre-trends for either group (Appendix Figure
G.6).

In Section 5.1, I will also show evidence on preference “drift.” If moves were endogenous to
evolving preferences, the selection component, and consequently, the parameter estimate would
likely increase with the duration since the move. Some evidence of drift emerges in the baseline
analysis, but the magnitude of drift appears to be quite small, and becomes insignificant when
looking at a restricted sample with no observable major life events.

4.2 Event Study Decomposition

The first decomposition I estimate is an event study, following the approach used by Finkelstein,
Gentzkow, and Williams (2016). The event study begins with the two-way fixed effect model
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defined in Equation 2, but summarizes heterogeneity with a single parameter, rather than the
full distribution of J place effects. For household i moving from origin o to destination d, the
expected change in carbon emissions is given by:

E[lnCO2it(d)− lnCO2it(o)|αi, Xit, τt] = ψd − ψo

I then express the change in place effects as a share of the differences between observa-
tional means:

ψd − ψo =
ψd − ψo
ȳd − ȳo

· (ȳd − ȳo)

≡ θo,d · (ȳd − ȳo)

Incorporating this expression into the two-way fixed effect model yields the event study equation,
which I use to estimate θ, the share of between-place differences attributable to place effects:

lnCO2it = αi + ψj + τt +Xitβ + εit

= αi + ψo + 1[moved] · (ψd − ψo) + τt +Xitβ + εit

= α̃i + 1[moved] · θ · (ȳd − ȳo) + τt +Xitβ + εit (7)

By characterizing the place share of heterogeneity with a single parameter, θ, the event
study approach vastly reduces the dimensionality of the estimation problem. This efficiency
comes at the cost of an additional assumption: In order for θ̂ to reflect an unbiased, causal
parameter, it cannot be correlated with other parameters in the model. In other words, unlike
the two-way fixed effect model, this approach does not permit systematic sorting of certain types
of households, either based on observable characteristics or unobservable types, to certain types
of places. This is because it infers place types from observational means; if there were sorting of,
for example, high type households to high type places, ȳd − ȳo would grow faster than ψd − ψo
as places grow more different, leading to biased estimates.

The stronger restriction on sorting is more plausible at the CBSA level, in which people
are more likely to move for job opportunities or to be close to family, than at the neighborhood
level, where choices are more likely to be driven by local amenities. In Section 5.1 I will provide
evidence that estimates of the share parameter are not heterogeneous along several dimensions,
suggesting little bias from this stronger assumption. However, even under weaker baseline as-
sumptions, under which event study results can’t be interpreted as causal, the results remain
informative for two reasons. First, they serve as useful descriptive evidence and additional model
intuition and validation for the KSS analysis to come. Second, they yield unbiased predictions
about how household carbon emissions will change for any set of observed moves. This is par-
ticularly useful, as researchers have highlighted that restrictive zoning and high cost of living
in productive areas drives people to higher emissions locations (Glaeser and Kahn 2010). The
labor and urban literatures have identified that such moves lead to decreased welfare due to loss

25



of agglomeration externalities. The event study specification makes it possible to additionally
estimate the carbon emissions externality of these regulatory restrictions.

4.3 Variance Decomposition

The second decomposition is based on the full set of nonparametric fixed effect estimates from the
model. Specifically, heterogeneity in household carbon emissions can be decomposed as below,
lumping τt with Xit for brevity:

V ar(yij) = V ar(ψj) + 2 · Cov(αi, ψj) + V ar(αi) (8)

+ V ar(Xitβ) + 2 · Cov(αi, Xitβ) + 2 · Cov(ψi, Xitβ) + V ar(εit)

This analysis focuses on the first three terms: the variance component of place effects, the
variance component of unobserved person effects, and their covariance, which captures the spatial
heterogeneity that results from systematic sorting on unobserved preferences. Each variance
component describes the share of overall heterogeneity attributable to the relevant component.

In contrast to the event study decomposition, the two-way fixed effects decomposition
allows unrestricted sorting of households across places; it imposes no limitations on the magnitude
or sign of the covariance terms. This flexibility comes at an econometric cost. A well-documented
challenge to estimating variance components in two-way fixed effect models is limited mobility
bias (Andrews et al. 2008). Limited-mobility bias arises because place effects are estimated based
on the outcomes of people who move between different locations; however, for any given place,
there might only be a small number of people moving in or out. This can lead to imprecise
estimates, which creates an upward bias in the naive plug-in variance estimate relative to the
true variance of place effects, even if estimates of place effects themselves are unbiased. To
address this, I estimate variance components using the heteroskedasticity-unbiased leave-out
estimator proposed by Kline, Saggio, and Sølvsten (2020), henceforth KSS. The KSS estimator
uses a leave-out estimate of standard errors to correct estimates of the variance components for
sampling variability.

I implement the leave-out estimator at the household level, leaving out all observations
corresponding to a household match. In the mover sample, the KSS estimator is robust to unre-
stricted heteroskedasticity and serial correlation within each match. Because it is not possible to
leave out matches for stayers without dropping all their observations, if there is serial correlation
in the error term, KSS estimates of the person variance component in the panel sample are an
upper bound on the true value. See Appendix E for additional computational details, and KSS
for a complete discussion of the leave-out estimator.

5 Results

This section presents the core results of my paper: estimates of the share of heterogeneity in
household carbon emissions attributable to place effects. I begin by showing results from the
event study specification, which – even if the stronger assumptions on selection are violated
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– serve as additional descriptive evidence and can be used to predict how household carbon
emissions will change for movers under existing patterns of mobility. I then present results from
the variance decomposition of the unrestricted two-way fixed effect model. I conclude the section
with a discussion on interpreting the two versions of the analysis.

5.1 Event Study Decomposition

This section presents estimates from the event study derived in Section 4.2

lnCO2it = α̃i + 1[moved] · θ · (ȳd−i − ȳo−i) + τt +Xitβ + εit

where ȳj−i are sample means estimated from the full sample, leaving out the household observa-
tion.14

Table 3 presents event study estimates of θ̂, which captures the share of differences
between observational place means attributable to differences between place effects. Columns
(1)-(3) show results from regressions examining CBSAs while columns (4)-(6) show results from
regressions examining tracts. The top panel of the table shows results estimated from the panel
sample, which consists of both movers and stayers; the bottom panel shows results using just
the mover sample. Both samples use mover variation to identify place effects, but estimates may
differ if the relationship between household characteristics and emissions varies systematically
between movers and stayers. For instance, if having children induces divergent preference shocks
– prompting movers to seek larger, potentially higher-emission homes while reinforcing stayers’
preference to be within walking distance of friends and local amenities – including stayers in
the analysis could underestimate the direct impact of children on movers’ emissions, thereby
overstating the place effect. Across specifications, the mover sample yields place share estimates
that are at most four percentage points lower than the panel sample estimates. This implies
that movers and stayers have only marginally different responses to changes in observables, and
including stayers introduces a small upward bias in the place effect estimates.

Columns (1) and (4) present estimates from a model with just year fixed effects. These
estimates show that when a household moves, its emissions change by 89-91 percent of origin-
destination CBSA mean differences, and 76-78 percent of origin-destination tract mean differ-
ences. However, these estimates are confounded by the correlation between household charac-
teristics and location choices. Columns (2) and (5) address this by controlling for observable
household characteristics (age, household income, household size, number of children, and home-
owner status), that likely influence both emissions and neighborhood choice. This adjustment
reduces CBSA share estimates by up to five percentage points (to 85-86 percent) and tract share
estimates by nearly 20 percentage points (to 57-60 percent). The larger impact on tract-level
estimates suggests that, as you would expect, household sorting plays a more significant role in
neighborhood-level emissions variation, while CBSA-level moves may be driven more by factors

14. To the extent that there is sampling variability in the distribution of observational means, my estimate of
the relationship between origin-destination mean changes and individual changes in logCO2 may be biased. In
practice, using a linear Empirical Bayes estimator to adjust means for sampling variability does not materially
change the results.
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like job opportunities or family considerations. In Appendix Table G.6, I re-estimate columns (2)
and (5) controlling for average heating degree days, cooling degree days, and electricity emissions
factors. Doing so decreases the CBSA-share to 68-70 percent, and the tract share to 51-54 per-
cent. While these estimates lend insight into the mechanisms underlying place effects, I focus my
main event study analysis on total place effects, which are more relevant for predicting emissions
changes from observed migration patterns.

Table 3: Share of Spatial Variation in Mean CO2 Attributable to Place Effects

CBSA Tract

(1) (2) (3) (4) (5) (6)

A: Panel Sample
Place share of mean difs. 0.91*** 0.86*** 0.86*** 0.78*** 0.60*** 0.55***

(0.008) (0.007) (0.016) (0.003) (0.003) (0.007)

N 1,764,000 1,764,000 633,000 1,710,000 1,710,000 613,000
R2 (adj.) 0.73 0.75 0.77 0.74 0.76 0.77

B: Mover Sample
Place share of mean difs. 0.89*** 0.85*** 0.84*** 0.76*** 0.57*** 0.53***

(0.009) (0.009) (0.020) (0.004) (0.004) (0.009)

N 191,000 191,000 36,000 508,000 508,000 102,000
R2 (adj.) 0.64 0.70 0.70 0.69 0.73 0.73

Household controls X X X X
No big life events X X

Note: This table reports event study estimates of the place share of spatial heterogeneity in household carbon
emissions. The place share estimate (θ̂) represents the proportion of differences in average carbon emissions (ȳ)
between a mover’s origin and destination attributable to place effects. Panel A reports estimates from the panel
sample, while panel B restricts the sample to movers only, allowing for systematic differences between movers
and stayers. Columns (1) and 4 show estimates from CBSA and tract moves, respectively, with only year fixed
effects. Column (2) and (5) add controls for the standard set of household characteristics. Columns (3) and (6)
restrict the sample to households without changes in number of children, income changes exceeding 50 percent,
or changes in homeownership. All estimates use Census sample weights.

Even after accounting for the rich set of observable characteristics available in the data,
household destination choices may still be influenced by unobserved heterogeneous preference
shocks. While I cannot rule this out entirely, I explore the potential bias from such selection by
restricting the sample to households with minimal observable shocks, motivated by the premise
that these households are less likely to have experienced large concurrent unobservable changes.
Columns (3) and (6) present results from this “no big life events” subsample, which excludes
households that experienced a change in the number of children, a greater than 0.5 log point
change in income, or a change in homeownership status between observations. This subsample,
comprising approximately 20 percent of the original observations, yields place share estimates
at most five percentage points lower than the baseline estimates. The fact that households least
likely to have experienced unobservable shocks yield qualitatively similar place share estimates to
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the baseline sample is reassuring and suggests limited bias from shocks to unobserved preference
heterogeneity.

In addition to unobserved shocks, another potential source of bias arises from “preference
drift” gradual changes in households’ preferences over time that are not fully captured by changes
in age or other observable characteristics (Card, Heining, and Kline 2013). If such drift exists
and influences relocation decisions, place effect estimates would conflate true causal effects with
selection, particularly for moves observed after long time intervals. This would manifest as place
effect estimates that trend upward with the duration between observations. To explore this
possibility, Figure 4 presents tract-level place share estimates by duration between observations,
controlling for demographic and household characteristics. The light gray points depict estimates
for the baseline mover sample, while the dark blue bars correspond to the restricted subsample
of movers with no big life changes between observations.

Figure 4: Tract Share of Spatial Variation, by Duration Between Observations
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Note: This figure shows event study estimates of the share of spatial variation in mean carbon emissions that
can be explained by place effects, by duration between mover observations. In other words, each coefficient is
the estimate for place effects generated from the sub-sample of households that I observe x years apart.
Coefficients plotted in light gray are estimated from the model using the full panel of stayers and movers.
Coefficients plotted in the dark blue are estimated from the model using the sub-sample of stayers and movers
with no changes in the number of children, less than 50 percent change in household income, and no change in
homeownership status between observations. All estimates are weighted using Census sample weights.

For the full mover sample, a slight upward trend emerges, with place share estimates for
durations in the 15-19 year range exceeding the pooled estimate. This pattern dissipates when
considering the restricted subsample of movers without observable big life changes; the pooled
estimate for this group is not contained within the 95% confidence interval for four out of the
19 duration-specific estimates, but with no clear trend across durations. Appendix Figure G.7
presents analogous CBSA estimates, which exhibit a similar pattern, except the upward trend
observed in the longer-duration coefficients become insignificant in the baseline mover sample as
well.
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While these results suggest some preference drift, potentially leading to upward-biased
place share estimates, the magnitude appears small relative to observed changes in emissions be-
tween places, and this bias appears to be negligible in the sample restricted to households without
big life events. One additional result that emerges from this analysis is that household carbon
emissions appear to change instantaneously, suggesting place effects stem from attributes that
directly impact emissions rather than gradual influences like peer effects or habit formation.15

As a final specification check, I explore heterogeneity across moves of different magni-
tudes in terms of place mean changes. A potential concern with the results presented thus far
is that households choosing to relocate from low-emissions places to high-emissions places (or
vice versa) may systematically differ from those moving between areas with similar emissions
levels. If a household’s choice of destination reveals newly observable information about unob-
served preference shocks, the estimates would be biased, mistakenly attributing these shocks to
place effects. To explore this possibility, Figure 5 depicts changes in mover households’ carbon
emissions across deciles of origin-destination mean differences, controlling for demographic and
household characteristics. The x-axis represents conditional changes in mean emissions between
origin and destination, while the y-axis shows to conditional changes in household emissions.
The 45-degree line (in gray) represents a scenario in which place effects fully explain variation in
carbon emissions across locations. The solid line’s slope corresponds to the pooled estimate of
the relationship between tract-level mean changes and household-level changes. Standard errors
are estimated using bootstrap.

15. While I don’t observe how long ago a household moved, the expected time since moving increases with the
duration between observations.

30



Figure 5: Place Share of Spatial Variation, by Move Type
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Note: This figure shows mover changes in household carbon emissions, by size of origin-destination differences
in mean carbon emissions. All estimates are from a model that conditions on changes in observable household
characteristics and year fixed effects. I split movers into ten deciles, according to the size of the (conditional)
gap in mean carbon emissions across their origin and destination, and estimate standard errors using bootstrap.
Point estimates are shown with 95% confidence intervals. The solid lines show the regression estimates from the
pooled model, and the dotted gray line denotes 45°, i.e. the scenario in which moving to on average higher or
lower emissions places leads to a one-for-one increase in own carbon emissions. All estimates are weighted using
Census sample weights.

I find that, for both moves across CBSAs and moves across neighborhoods, changes in
household carbon emissions as a share of changes in origin-destination means are symmetric
and linear across move types. In other words, the share of spatial heterogeneity attributable
to place-based differences is consistent for moves from low- to high-emissions places (rightmost
points), moves from high- to low- emissions places (leftmost points), and moves between places
with similar average emissions (central points). The symmetry and stability of share estimates
have several implications. First, this result extends the symmetry check presented in Figure 3,
further validating the log-linear model specification and suggesting that the two-way fixed effect
model reasonably approximates household carbon emissions. Recall that this implies place effect
estimates are unbiased even if I never observe some household types moving to some place types.
Second, this result indicates that the event study estimates presented in Table 3 are not driven
by a subset of movers or mover destinations, alleviating concerns that estimates primarily reflect
changes in the emissions of households who moved to a vastly different destination in response to
a large unobserved preference shock. Lastly, this result provides another dimension along which
heterogeneity in the estimated share parameter appears to be limited.

In summary, the event study estimates indicate that movers’ carbon emissions change
by over half of origin-destination differences in neighborhood means (and about 85 percent of
origin-destination differences in CBSA means) when they move. Under strong assumptions on
sorting, this can be interpreted as a causal share parameter, which would determine the change
in carbon emissions resulting from any household moving between any pair of places. I estimate
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that heterogeneity in the share parameter is limited along several dimensions explored through-
out this section – estimates are within a 5 percentage point range of each other across subsamples
with vastly different changes to observed characteristics, across different observation time hori-
zons, and across varying move types (between similar versus dissimilar places) – suggesting that
perhaps bias from violations of this assumption may also be minimal.

Under weaker assumptions, the event study estimates serve as a useful specification check
for the two-way fixed effect model, and perhaps more interestingly, they provide unbiased predic-
tion of how household carbon emissions will change for any observed move. Recent research and
media coverage have highlighted a pattern of increasing migration from more expensive but on
average lower emissions places to less expensive but on average higher emissions places (Kolko
2021; Eisen 2019). For instance, in 2019, there was a net migration of about 45,00 people from
California to Texas. While not all these moves were from San Francisco to Houston, using these
two cities as an illustrative example: carbon emission in Houston are about 21% higher than they
are in San Francisco (Jones and Kammen 2014). Combined with the event study findings, this
implies that regulatory constraints that restrict housing, increase the cost of living, and drive
this pattern of migration increase household carbon emissions by 12 percent or more, imposing
a sizeable carbon externality.16

5.2 Variance Decomposition

In this section, I weaken the restriction on sorting imposed by the event study, and present
estimates from the variance decomposition shown in Equation 8

V ar(yij) = V ar(ψj) + 2 · Cov(αi, ψj) + V ar(αi)

+ V ar(Xitβ) + 2 · Cov(αi, Xitβ) + 2 · Cov(ψi, Xitβ) + V ar(εit)

For each sample and specification, Table 4 presents the overall variance of the outcome,
log(CO2), the share of variance attributable to each of the unobserved heterogeneity components
(place effects, ψj and household effects, ψi), the correlation between the unobserved heterogeneity
components, and the bias-corrected standard deviation of place effects. The top panel presents
estimates from the entire panel of movers and stayers, while the bottom panel presents estimates
from the mover-only sample.

Columns (1) and (5) present the baseline analysis, which includes year fixed effects and
the standard vector of household controls. I estimate that CBSA effects account for 14-16 per-
cent of overall heterogeneity (column 1), and tract effects account for 22-23 percent of overall
heterogeneity (column 5). Columns (2) and (6) introduce controls for mean heating degree days,
cooling degree days, and log electricity emissions factors, excluding their impact on household
emissions from estimated place effects. This specification not only provides insight into the
mechanisms driving place effects, as in the event study analysis, but also allows for more precise

16. The 12 percent figure would correspond to treating San Francisco and Houston as neighborhoods. If we were
to treat them more like CBSAs, the predicted increase in emissions would be closer to 19 percent.
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counterfactual analysis within the KSS framework. When considering interventions that impact
household carbon emissions through changes to local amenities and the built environment, iso-
lating the place effect component not driven by climate or electricity generating sources may be
more relevant, though the appropriate specification remains context-dependent. For instance, a
city-wide initiative to install solar panels on parking lots, potentially coupled with EV charging
stations, could decrease the average emissions intensity of electricity while promoting EV adop-
tion. Moreover, while regional climate is, to first order, exogenous to local actions, there are
many interventions cities and neighborhoods could enact to decrease heat island effects and in
turn reduce local heating degree days (Druckenmiller 2023).

I find that controlling for climate and electric grid intensity together decreases the CBSA
share of spatial heterogeneity by roughly 10 percentage points, or by more than half, to 4-7
percent of overall heterogeneity. At the neighborhood level, controlling for climate and electric
grid intensity decreases the place share of heterogeneity by roughly 6-7 percentage points (column
(6)), by less than half, leaving the remaining neighborhood attributes explaining approximately
15 percent. In columns (3) and (7) I additionally partial out variation driven by prices, using a
price index constructed from interacting local lagged fuel shares with national retail prices. This
does not further change the results at either the CBSA or tract level.
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Table 4: Unobserved Heterogeneity in CO2 – Variance Decomposition

CBSA Tract

(1) (2) (3) (4) (5) (6) (7)

Panel Sample

Variance of log(CO2) 0.31 0.31 0.31 0.31 0.31 0.31 0.31

Share attributable to places 0.16 0.07 0.08 0.17 0.23 0.15 0.15
Share attributable to hhs 0.50 0.50 0.50 0.30 0.36 0.36 0.36
Corr. of place and hh effects 0.01 0.03 0.03 0.02 0.02 0.08 0.11

SD of place effects 0.23 0.15 0.16 0.23 0.26 0.22 0.22

Mover Sample

Variance of log(CO2) 0.35 0.35 0.35 0.33 0.33 0.33

Share attributable to places 0.14 0.04 0.04 0.22 0.16 0.16
Share attributable to hhs 0.14 0.16 0.17 0.10 0.10 0.10
Corr. of place and hh effects 0.07 0.08 0.08 0.08 0.16 0.18

SD of place effects 0.22 0.12 0.12 0.27 0.23 0.23

Climate + Electricity CO2 X X X X
Price Index X X
Time-Varying FEs X

Note: This table reports results from the heteroskedasticity-robust KSS estimation of variance components.
For each sample and specification, the table reports the overall outcome variance, the share of variance
attributable to place effects (ψj), the share of variance attributable to household effects (αi), the correlation
between place effects and household effects (which captures how much households sort on unobserved
characteristics), and the bias-corrected standard deviation of place effects. All specifications include year fixed
effects and the standard set of household controls used throughout the paper. Columns (1) and (5) report the
baseline variance decompositions at the CBSA and tract levels. Columns (2) and (6) add controls for local mean
heating degree days, cooling degree days, and log electricity emissions factors. Columns (3) and (7) additional
control for a price index, constructed from lagged fuel shares interacted with national retail prices. Finally,
column (4) computes time-varying CBSA place effects using 5-year periods (2000-2004, 2005-2009, 2010-2014,
and 2015-2019), using stayer observations across periods to identify time variation in place effects, while movers,
as before, identify cross-sectional variation.

In Appendix Table G.7, I control separately for electricity emissions factors and climate,
and I find that the majority of the decline in place share observed in Columns (2) and (6) comes
from controlling for electricity emissions factors. It is well understood that climate has a robust
effect on energy demand (e.g. Goldstein, Gounaridis, and Newell 2020; Levinson 2016), so why
the disparity? Many places that are otherwise low-emissions are in regions that have made
efforts to decarbonize their electricity (Murray and Maniloff 2015; Petek 2020) so there is a
positive correlation between electricity emissions factors and high other emissions attributes. In
contrast to this, I estimate a negative correlation between having above-average heating degree
days and low other carbon emissions attributes; many colder cities are in the Northeast, a region
which disproportionately contains older, denser cities and neighborhoods (Tomer et al. 2021).
These correlation terms enter the place effect variance component, amplifying it when electricity
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emissions factors are included in the place effect, and diminishing it when heating and cooling
degree days are included.

Across all three specifications discussed so far, estimates of the place share of heterogene-
ity are quite comparable between the panel and mover sample. This is not true of the estimates of
the household components; a comparison between the panel sample and the mover sample reveals
that the contribution of unobserved household characteristics to overall heterogeneity is highly
sensitive to which sample the model is estimated on. In the panel sample, unobserved household
heterogeneity accounts for 50 percent of overall heterogeneity when defining place at the CBSA
level, and 36 percent when measuring place at the neighborhood level. Using the mover-only
sample substantially decreases the unobserved household contribution across specifications, to
14-17 percent in the CBSA specification and 10 percent in the tract specification. The correlation
estimates between unobserved place and household characteristics are also sensitive to sample
choice, increasing across all specifications by up to eight percentage points when switching from
the panel to the mover sample. This suggests some assortive matching of household types to
place types (especially neighborhoods), but in the specification where the correlation coefficient
is largest, it remains relatively low, at under 20 percent. The share of overall heterogeneity
attributable to matching implied by the covariance term (which is not shown in Table 4 but can
be computed from the correlation coefficient and variance components) is less than 5 percent
across all specifications.

The panel and mover samples may yield different estimates due to inherent differences
between stayers and movers, or KSS’s inability to correct for serial correlation in stayers’ error
terms. To distinguish between these causes, I compare the KSS decomposition estimates with an
uncorrected AKM decomposition (Abowd, Kramarz, and Margolis 1999), presented in Appendix
Table G.8. If differences between stayers and movers drive the discrepancy, both KSS and AKM
estimates should reflect this pattern. Conversely, if serial correlation in stayers’ error terms is
the main factor, AKM should show similar relative contributions of unobserved household het-
erogeneity across samples (both inflated due to limited mobility bias), with significant differences
emerging only after the KSS correction. The AKM estimates reveal relatively stable place and
household shares across panel and mover samples, with only minor reductions in the household
component’s relative size in some specifications. This contrasts with the more dramatic shifts
observed in the KSS analysis, suggesting that KSS estimates of household variance components
are likely more reliable in the mover sample. Panel sample estimates likely represent an upper
bound, with upward bias primarily driven by serial correlation in stayer error terms. Appendix
A.2 discusses potential sources of this serial correlation, many arising from the survey nature
of the data, and their implications for result interpretation. Additionally, Appendix Table G.9
evaluates the sensitivity of results to alternative outcome definitions in the KSS decomposition.

Up until now, I have been estimating place effects pooling over the entire sample time-
frame; however, place effects may evolve over time in ways that differ from national average
trends in carbon emissions. Local or state governments particularly concerned about climate
change may enact regulatory changes or make place-based investments aimed at reducing emis-
sions for their residents. Changes to place effects could also arise from local or regional planning
initiatives motivated by factors completely unrelated to decisionmakers’ climate objectives. For
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instance, the Phoenix metropolitan area – one of the fastest growing metropolitan areas in the
US – grew by nearly 1.6 million residents between 2000 and 2020. This period of growth has been
accompanied by a mix of suburban expansion, urban development, the opening of a new light rail
system, and several highway expansions (Maricopa Association of Governments 2020). To allow
for such place-specific changes, I follow Lachowska et al. (2023) and estimate time-varying fixed
effects ψjt at the CBSA level, using stayers to identify variation across time within place.17 To
maintain connectivity in my set of places, and because for the most part places evolve slowly, I
define the time-varying place effects using 5-year intervals. Thus, there’s a different time-varying
place effect for each period 2000-2004, 2005-2009, 2010-2014, and 2015-2019. Results are shown
in column (4) of Table 4 – allowing CBSA effects to evolve increases their variance share by only
one percentage point relative to the baseline specification. This implies that changes in places
over my sample period are either mostly captured by national secular trends, or are unrelated to
household carbon emissions. In Appendix F, I provide some descriptive results on the nature of
changing time-varying place effects in my sample. I also discuss some of the ways in which place
effects may have evolved following the COVID-19 pandemic and the ensuing transition to remote
work, which was accompanied by a steep decline in commuting and a shift towards larger homes
to accommodate home offices (Van Nieuwerburgh 2023; D’Lima, Lopez, and Pradhan 2022).

As a final specification test, in Appendix Figure G.9, I show binned scatter plots similar to
those presented in Section 5.1, but now with deciles of changes in estimated place effects, rather
than observational means, on the x axis. I plot these against two sets of changes in household
mean outcomes: changes for the full mover sample, and changes in the sample restricted to only
households with no big life events. In a correctly specified model, changes in place effects should
lead to one-for-one changes in household carbon emissions, though attenuation bias from noisily
estimated place effects is expected to decrease the slope by some. This is roughly what I observe.
Moreover, I find no discernible difference between the primary sample and the subsample of
households experiencing no big life events, which provides additional reassurance that selection
on heterogeneous preference shocks isn’t a first order threat to identification in my analysis.

5.3 Interpreting Decomposition Results

How do the event study and KSS results inform one another? First, recall that event study es-
timates are unbiased only if heterogeneity in the share parameter is uncorrelated with observed
and unobserved household characteristics. I have shown evidence that the event study estimates
are fairly stable across several observable dimensions of heterogeneity in the data. I also showed
in the KSS decomposition that the covariance between unobserved components of heterogeneity
is relatively small – the largest correlation coefficient across the four baseline estimates corre-
sponding to the specifications examined in the event study is .08. Together, this evidence suggest
that bias from this assumption on selection should be minimal.

17. Because tracts by definition consist of many fewer observations than CBSAs, including a time varying
component introduces either substantial noise, or a substantial geographic restriction to only the most populated
tracts, so I do not estimate time-varying tract effects. Studying neighborhood-level changes is an important
direction for future study.
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Second, even when unbiased, the event study yields estimates of shares of mean dif-
ferences between places attributable to place effects, while the KSS estimates yield a variance
decomposition of overall variation, and this can lead to meaningful discrepancies in magnitudes.
To help illustrate this, consider a simplified version of the two-way fixed effects model, where
yit = αi + ψj + εit. Song et al. (2019) show that unobserved heterogeneity can be decomposed
further into a between-place component V arj(ȳj), which captures the variation in mean house-
hold carbon emissions across places, and a within-place component V ari(yit − ȳj |i ∈ j), which
captures the heterogeneity in carbon emissions of households living in the same place:

V ar(yit) = V arj(ȳj) + V ari(yit − ȳj |i ∈ j)

= V ar(ψj) + 2 · Cov(ᾱj , ψj) + V ar(ᾱj)︸ ︷︷ ︸
Between

+V ar(αi − ᾱj) + V ar(εij)︸ ︷︷ ︸
Within

(9)

Equation 9 highlights that heterogeneity between places reflects variation in place effects,
sorting of certain types of households to certain types of places (the covariance term), and
“segregation” of households – the extent to which households of different types segregate across
places, whether or not this pattern reflects systematic sorting on place types.18 In addition to
the between-place heterogeneity, overall heterogeneity reflects heterogeneity in household carbon
emissions within places, as well as heterogeneity that cannot be explained by the two-way fixed
effects model.

For intuition, imagine two places, one ψlow and one with ψhigh, with identical popula-
tions. If there is high variation in carbon emissions within populations and a small difference
between ψlow and ψhigh, the event study would yield a share coefficient of one (since populations
are identical across places, all between differences are driven by place effects), but the KSS de-
composition would yield a place variance component of close to zero (because of a large within
component to the variance). In practice, this is very close to what happens at the CBSA level –
the vast majority (85 percent) of differences between CBSAs can be attributable to variation in
place effects and not household attributes, but there is much more variation in household carbon
emissions within CBSAs than there is across, leading to a variance component of approximately
15 percent in the KSS estimation (more than half of which is attributable to climate and elec-
tric grid intensity). At the neighborhood level, household sorting contributes more to variation
between places, dropping event study estimates of the place share to roughly 55-60 percent.
Accounting for variation within neighborhoods in the denominator decreases the neighborhood
share to 22-23 percent of overall heterogeneity, or about 15 percent when excluding climate and
electric grid intensity from place effects.

6 The Characteristics of Low and High-Emissions Places

With estimates of place effects in hand, I proceed to characterizing high and low-emissions places.
As highlighted in the conceptual model, place effects reflect a mix of differences in demand for
energy services, energy prices, energy demand elasticities, fuel mixes, and emissions factors. The

18. ᾱj ≡ E[αi|i ∈ j]
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urban and planning literature has identified many local amenities that could contribute to dif-
ferences in average household energy demand and energy demand elasticities. In the residential
energy sector, larger homes tend to use more energy, as do single-family homes; there is a strong
relationship between carbon emissions and density, though it is potentially non-monotonic due
to the effect of density on micro-climates; and parks, plants, and green surface coverage are all
negatively correlated with energy use (see e.g. Ko 2013, for a review). In the transportation
sector, car use is lower in places with better public transportation, less parking, and more direct
road connectivity (e.g. Transportation Research Board 2009; Barrington-Leigh and Millard-Ball
2017), and mechanically, people drive fewer miles when they live closer to where they work,
shop, and spend their leisure time. Many of these amenities are intertwined and simultane-
ously relate to residential and transportation emissions, underscoring the value of studying these
sectors together. For instance, higher density not only implies smaller homes but also enables
more efficient public transportation networks by reducing distances between transit stops and
destinations.

In Figure 6, I show the results from regressions of estimated tract effects onto a set
of observational tract level characteristics. In the left panel, I show coefficients from bivariate
regressions of tract effects onto each of the shown tract-level characteristics independently (except
for suburban and rural, which are estimated in a single regression), while in the right panel, I show
coefficients from a single regression onto all of the characteristics.19 Observable characteristics
are all measured at the tract level, and are normalized across tracts to have mean zero and a
standard deviation of one (except for suburban and rural, which are retained as indicators). Thus,
coefficients should be interpreted as showing approximately the average percent change in carbon
emissions associated with a one standard deviation change in neighborhood-level observable
characteristics.

Observable characteristics fall into five categories. Both “urbanity” and “local amenities”
cover aspects of urban form that households effectively taken as given, but that vary neighbor-
hood to neighborhood. These include whether a tract is urban, suburban, or rural, its density,
measures of local public transportation amenities (walk scores, bike scores, transit scores, num-
ber of nearby rail routes and bus routes), and measures of sprawl (captured by geodesic distance
between tract centroids and the centroid of the closest city and the largest city within the CBSA).
“Capital stock” characteristics reflect household choices among the set of options available in a
place, which are determined at least in part by local zoning regulations or other policies. These
include the share of single-family detached homes, average house sizes, and the number of cars
in a household. “Exogenous amenities” are predominantly shaped by factors beyond local con-
trol, and households also take these as given. These include annual heating degree days, annual
cooling degree days, and electric grid intensity.20 Finally, the “demographics” category captures
tract level variation in household observable characteristics.

19. I used a LASSO regression with 10x crossfold validation to select characteristics, and it retained all of the
variables.
20. As mentioned earlier, neither climate nor electricity emissions factors are impervious to local influence.

Urban form can quite meaningfully impact local micro climates through urban heat island effects, but in this
paper my measure of climate is at the NOAA climate division level, a geographically coarser definition. And
municipal utilities can shape local electricity emissions factors through energy procurement choices, but currently
make up a small share of overall electricity supply.
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Figure 6: Correlates of Tract Effects

(a) Bivariate Regressions
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(b) Single Regression
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Note: This figure presents estimates from OLS regressions of estimated tract effects on a set of observable
place-based and household characteristics. Panel (a) shows results from separate bivariate regressions, while
panel (b) shows results from a single regression on all covariates. All amenity variables are tract level means,
normalized to have mean zero and standard deviation one, except the rural and suburban indicators, which are
retained as indicators. Regressions are weighted using ACS sample weights. Thus, estimated coefficients reflect
the average change in place effect – and in turn the percent change in carbon emissions, given the log
specification of the model – associated with a one standard deviation change in observable characteristics.

The results of the bivariate regressions (Panel A) are consistent with observational data
and conclusions in the urban planning literature. Higher-emissions neighborhoods tend to be
less urban and dense, with poorer walkability, bikability, and public transit options, and are
typically situated farther from city centers within their CBSA. Higher-emissions neighborhoods
feature a higher proportion of detached and larger homes, with households owning more cars
on average. They experience less mild climates, and have higher electricity emissions factors.
Finally, looking at the projection of tract effects onto demographics, I find that non-white,
Hispanic, college-educated, and higher income households are more likely to live in low-emissions
tracts, while older households, households with children, and homeowners are more likely to live
in high-emissions tracts.

When including all of these characteristics in a single regression (Panel B), directionally
the relationships remain the same, but many of the coefficient magnitudes decrease substantially.
Electricity emissions factors, heating degree days, and cooling degree days emerge as three of
the four strongest correlates of place effects. The second largest correlational coefficient is on
the number of rooms in a house; a standard deviation change in tract mean number of rooms,
is associated with a roughly seven percent change in tract level carbon emissions. The remain-
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der of tract effects appear to load primarily onto measures of sprawl, the quality of local bike
infrastructure, rurality, density, and household income, with standard deviation changes in these
characteristics being associated with a 2-4 percent change in carbon emissions each. It is notable
that measures of walkability, transit quality, share of detached homes, and number of cars appear
to become less important after conditioning on density, sprawl, and home size. It is possible that
this is because these characteristics are very co-linear in the observational data; as highlighted
earlier, many of these relationships are interconnected.

Appendix Figure G.10 shows analogous projections of household fixed effects onto observ-
able neighborhood-level characteristics. I find that correlations between household effects and
observable characteristics are about an order of magnitude weaker than those between tract ef-
fects and observable characteristics in both the bivariate regressions and the full regression. This
is consistent with minimal sorting on unobserved household characteristics that I estimate in
KSS. The largest coefficients imply that households with high unobservable potential for carbon
emissions sort to tracts where people are on average higher income and have more children, where
it is warmer, where electricity is higher emissions, and where houses are bigger. Appendix Table
G.10 presents additional results on the correlates between observable household characteristics
and observable place characteristics.

These regressions do not elucidate causal relationships. As is the case with inference about
place effects as a bundle, inference about the role of specific amenities from observational data
alone is likely to be biased by household sorting. Nevertheless, the observational data suggests
features of urban form whose effect on household carbon emissions should be studied further with
credible exogenous variation in the amenity itself. Previously, one might worry about whether a
setting for such a case study is selected. Can we learn about the effect of lifting zoning restrictions
and allowing for smaller lot sizes if people who live in denser cities have significantly different
preferences than those who don’t? Are improvements to bike infrastructure only effective in
cities where a lot of people already bike? The core results of my paper suggest that a meaningful
share of variation between places is driven by variation in place effects, with evidence that place
effects are constant across heterogeneous populations, mitigating some of these concerns about
external validity.

7 Implications for Aggregate Carbon Emissions

The wide distribution of place effects suggests that there may be an opportunity to substantially
reduce household carbon emissions from residential and transportation energy through what I
refer to as place-based climate policies. Place-based climate policies – distinct from regional
energy sector regulations or market-based mechanisms designed to encourage decarbonization –
aim to reduce household carbon emissions by altering local characteristics that shape household
energy choices.21 They could be implemented at federal or local levels, and, building on insights

21. As transportation and residential sectors electrify and the power grid decarbonizes, the impact of place-based
drivers of household emissions will diminish. However, given current challenges in clean electrification, particularly
transmission capacity constraints and aging infrastructure (e.g. U.S. Department of Energy 2015), place-based
policies that reduce energy demand and alleviate pressure on the electricity grid could be complementary to more
traditional decarbonization instruments.
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from labor and urban economics, could be designed to simultaneously reduce carbon emissions
and address economic development goals, housing shortages, or local externalities like pollution
and congestion.

Infrastructure and local public goods investments make up one category of potential
place-based climate policies. The federal government has a history of investing into transporta-
tion infrastructure, with the Interstate Highway System being its most notable example (U.S.
Department of Transportation 1977). More recently, the Bipartisan Infrastructure Law provided
a significant increases to transit funds across the country; the Federal Transit Administration
announced in early 2024 that it would be investing $9.9 billion to support local transit systems
in urban areas across the US (U.S. Department of Transportation 2024). While adding and
expanding public transit networks is perhaps the most obvious example of an intervention that
might decrease place effects, many cities are implementing less costly initiatives that repurpose
existing urban space for community use. Paris’s Plan Velo has converted over 200 miles of
roads into (often protected) bike lanes as of 2024, with further expansions planned through 2026
(Ville de Paris 2021). Barcelona’s Superillas program aims to transform more than half of its
car-dominated streets into mixed-use public spaces (Roberts 2019), while New York City’s High
Line project has repurposed an abandoned elevated railway into a popular pedestrian walkway
and park. The COVID-19 pandemic accelerated this trend, sparking "slow" or "open" streets
programs which temporarily restricting car traffic to benefit pedestrians and cyclists in many
cities of the US, with some cities now working to make these changes permanent (New York City
Department of Transportation 2023; Combs 2020). Expanding the network of electric vehicle
chargers is another example of a lower cost place-based infrastructure investment that can reduce
carbon emissions.

A second category of potential place-based policies includes regulatory changes intended
to encourage – or remove barriers previously preventing – sustainable urban development. Zoning
deregulation, land use reform, and transit-oriented development have all gained traction in the
US in recent years. In 2018, Minneapolis became the first city in the US to enact a city-wide
ban on exclusionary zoning, a common practice across the US that restricts land to be used
for single-family homes only (Mervosh 2018). In 2021, the California State Assembly passed
Bills 9 and 10, which streamlined the process of "up-zoning" residential land, allowing for the
development of up to four units on land previously zoned for single-family homes only and
facilitating higher-density construction near transit corridors. This was followed by AB 2097
in 2022, which eliminated most parking minimum requirements for new development (Fulton
et al. 2023). At the federal level, President Biden’s original infrastructure bill proposal in March
2021 included grants to cities that eliminated exclusionary zoning. While this portion of the bill
did not get passed, and many states and municipalities are still debating but not implementing
zoning reforms, these examples illustrate the relevance of such approaches in the current policy
debate. At the same time, some states and municipalities are making regulatory efforts to make
building codes more stringent by, for example, enacting energy efficiency minimum requirements
(Levinson 2016), or mandating electrification through natural gas hook up bans (Payne 2020).

This paper does not identify a causal relationship between any specific amenity and
place effects, or any specific intervention and place effects, but it shows evidence that low-
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emissions places are low-emissions not simply due to sorting of low-emissions people to those
places, and that low emissions places tend to have amenities that are characteristic of more
urban, less sprawling, neighborhoods. Using this as motivation, I examine how carbon emissions
would change if the national distribution of place effects were more urban than it currently is.
Specifically, to approximate a scenario in which the US limits suburban sprawl and increases
the share of households within a region that live in an urban neighborhood, I estimate the
effect on emissions if households currently living within a suburban or rural area lived instead
in a place with the average place effect of the nearest principal city. A naive comparison of
household emissions shows that, on average, households living in principal cities emit 20 percent
less than households living in surrounding areas. After accounting for sorting of households
between suburban and urban neighborhoods, my estimates suggest that if every tract had the
place effect of the nearest principal city, the emissions of suburban and rural households would
decrease by approximately 15 percent.

The majority of principal cities in the US would not be considered particularly urban on
a global scale. To consider the potential effect of deeper urbanization, I examine how household
carbon emissions would change if more people lived in places like Manhattan, which is uniquely
dense, walkable, and transit oriented within the US context. Specifically, I examine how the
emissions of household in the principal cities of the nine largest CBSAs after the New York
Metropolitan Area in the US would change if those cities developed into a place with the average
place effect of Manhattan. The observational gap is enormous: even using large cities as a com-
parison group, households in Manhattan emit about 73 percent less than observably comparable
households in the other nine large cities. Accounting for unobserved fixed differences between
households reduces the gap to 60 percent; people who choose to live in Manhattan are a selected
sub-sample, but their emissions are nevertheless much lower as a result of living in Manhattan
than they would be if they lived elsewhere.

These exercises lend insight into how development that shifts population shares across
place types by “expanding” places with lower place effects – either by making their neighbors
look more like them, or by allowing more people to live in such places without changing their
fundamentals – could affect emissions in the future. My estimates yield only a first-order, partial
equilibrium approximation to the effect of such interventions, as in practice there would be some
re-sorting of populations in response to place-based changes, which would change the distribution
of household types living in each place and thereby change aggregate carbon emissions. More
importantly, my estimates don’t lend insight into the specific interventions that would result in
the largest changes to place effects – this is a critical direction for future research. My results
highlight that the potential for urbanization-induced reductions to carbon emissions is overstated
when inferred from observational means across places, because people choose where to live based
in part on their potential carbon emissions. Nevertheless, because there is substantial variation
in household carbon emissions and neighborhood effects explain 15-23 percent of this variation
– depending on whether climate and electricity emissions are included in the place effects –
my results also imply that even relatively small shifts in the distribution of place effects that
households are exposed to could meaningfully decrease aggregate carbon emissions.
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8 Discussion

This paper is the first to estimate the causal effects of places on household carbon emissions
and decompose spatial heterogeneity in carbon emissions into a component driven by these place
effects and a component driven by household characteristics and sorting. I find that up to 23
percent of overall heterogeneity in household carbon emissions from residential energy use and
commuting across the US can be explained by neighborhood effects, or roughly 15 percent can
be explained by neighborhood effects after accounting for variation driven by climate and electric
grid intensity. Paired with high overall heterogeneity, these estimates imply that interventions
that change the population weighted distribution of place effects across the US, either through
direct changes to places, or through regulatory changes that make it possible for more people to
live in low emissions places, could result in meaningful reductions in household carbon emissions.

There are several limitations of my empirical analysis that should be taken into consider-
ation while interpreting my results. The first is that due to the survey nature of my data, carbon
emissions are noisily measured. This leads to lower explanatory power of the model than is
standard in papers using these methods with administrative data to estimate firm wage premia.
The relatively low explanatory power of the model could also reflect model mis-specification, but
with only two observations per household for the majority of my sample, the number of speci-
fication tests I can do is limited. Second, there is relatively little variation in urban form and
transportation options across the US – 75 percent of residential land in the US is zoned for single
family homes only (Badger and Bui 2019), 95 percent of commuters in my sample commute by
car, and there is only one high speed rail line in the entire country, which operates at high speed
over only roughly 50 miles of track. This is in stark contrast with other parts of the world, where
many cities are denser and substantially less car oriented. Moreover, place effects are identified
from movers, who differ from the general US population in meaningful ways. Thus, the external
validity of my results relies upon estimates being stable to widening the distributions of place
and household types.

Establishing that place matters – and how much it matters – for household carbon emis-
sions takes a critical first step toward investigating the welfare impacts of specific place-based
climate policies. The welfare effects of a given intervention depend on several parameters whose
estimation is outside of the scope of this paper. First, they depend on the causal relationships be-
tween local amenities and place effects, and on household preferences for local amenities. While
Tiebout (1956) posits that residential sorting allows for efficient provision of local public goods,
his framework only applies to amenities without scale economies. Moreover, there is reason to
believe that residential sorting is not efficient due to frictions and exclusionary policies (e.g.
Rothstein 2017; Hausman and Stolper 2021; Christensen and Timmins 2023; Avenancio-León
and Howard 2022). Estimating causal relationships between local public amenities and house-
hold carbon emissions, and quantifying whether emissions-relevant local public amenities are
at an efficient level are important directions for future work. Second, the welfare impacts of
place-based interventions would depend on the costs of implementing them relative to the cost
of business as usual or other contender climate policies. Costs can vary dramatically for the
same intervention in different settings (Goldwyn et al. 2022), making this estimation difficult,
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but incorporating cost estimates for a marginal value of public funds analysis (Hendren and
Sprung-Keyser 2020) is another important avenue for future research. It is worth emphasizing
that because built environment is sticky, infrastructure investments and regulatory choices made
in the present day have the potential to increase or decrease the costs of carbon mitigation efforts
in the future. Finally, welfare impacts would depend on other externalities or agglomeration ben-
efits of the intervention. For example, the types of interventions highlighted in this paper could
also impact local air pollution, congestion, traffic fatalities, and labor market productivity. These
co-benefits and harms have been extensively studied in the environmental and urban economics
literatures, and estimates could be incorporated into an aggregate welfare effect.
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A Data Appendix

A.1 Additional Details on Variable Construction

• Missing and imputed variables: I follow Chetty and Hendren (2018) and Bailey et
al. (2024) in treating all imputed variables as missing, unless otherwise described. Dollar
values are inflated to 2019 values using the Consumer Price Index (CPI). Throughout the
analysis I use demographic and household characteristics to control for selection on time-
varying observables, I use work characteristics to construct commuting variables, and I
use home characteristics in the second half of the paper to characterize places and study
associations between built environment and place effects.

• Flags: Residential energy expenditure is flagged as “allocated” (to zero) for many house-
holds in the 2014 ACS if they checked a box indicating that they did not use natural gas or
fuel use and then left the expenditure question blank. Because of this, I make an exception
to my rule of dropping flagged variables and allow for residential energy to be allocated to
zero based on the checkbox question.

• Work characteristics: For each individual I retain information on employment status,
place of work, weeks worked last year, and hours worked last week. I allow place of work
tracts or more detailed geographies to be missing, but I drop observations if county of work
is missing (unless the individual is unemployed or works from home, in which case I impute
their place of work as their home). I also allow current employment status to be missing if
weeks worked last year and hours worked last week are not missing and not imputed. In
2008-2018, the weeks worked variable is binned; I follow Chetty and Hendren (2018) and
assign the midpoint to all individuals in the bin. Since these variables are an input into
my measure of commuting energy use, I use the midpoint from the bin for all years to keep
the variable definition consistent.

• Demographic characteristics I control for age using bins: 18-24, 25-29, 30-34, 35-39,
40-49, 50-64, and 65+. I control flexibly for number of children in the household using
categorical variables for 0, 1, 2, or 3+ kids. As highlighted in Card, Cardoso, and Kline
(2016), the normalization choice for categorical variables does not affect the estimated size
of the place variance component or the variance component of the sum of fixed and ob-
servable household effects, but it does affect the relative sizes of the place and unobserved
household effects, as well as the estimated covariances. Throughout my analysis, I choose
the age bin 40-49, no college degree, male, white, and non-Hispanic as the omitted cate-
gories. Other than “white”, these are the categories with the highest within-group variance
in outcomes. Thus this normalization should err towards finding a larger unobservable
person component relative to place component.

• Observations dropped due to missing utility data: I exclude households from the
sample if their residential energy costs are included in rent, or if their gas costs are included
in their electricity bill, because I do not observe expenditures in those cases. As shown in
Table G.1, households in this sample have significantly lower income, are less likely to own
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their home, live in a detached single family home, or commute by car, and are more likely
to live in an urban neighborhood. For the subsample who would have been in the panel
if not for this restriction, I estimate these households are more likely to have an increase
in income, an increase in the number of children in the household, and go from renting
to owning than the baseline sample. They are also twice as likely to move from an urban
neighborhood to another urban neighborhood when moving. To the extent that you might
worry that 1) households who live in the most urban neighborhood are most selected and
would respond differently to changes in place than a more average household or 2) large
changes in observable characteristics signal that estimates may be biased by accompanying
large changes in unobservable characteristics, dropping these households from the analysis
is likely to decrease any upward bias in place share estimates that could arise from violations
of either the constant effects assumption or the exogenous mobility assumption.

• Vehicle fuel economy: I assume individuals that commute by car or taxi do so in a
vehicle with annual national average fuel economy, using data from the Federal Highway
Administration (2022). For motorcycles, I scale miles per gallon (mpg) by two (U.S. De-
partment of Transportation 2015). This is a minor point as motorcycles account for only
roughly 0.6 percent of vehicle miles driven (U.S. Environmental Protection Agency and
Energy 2020). I also account for the fact that in general fuel economy is roughly 30 percent
higher when driving on highways than in cities by adjusting mpg up by 19 percent rela-
tive to the national average for drivers whose average commuting speed exceeds 55 miles
per hour (mph), and down by nine percent relative to the national average for drivers
whose average commuting speed is below 40 mph (U.S. Environmental Protection Agency
2021b). As a robustness check, I also use data from the National Household Travel Survey
(NHTS) to estimate heterogeneous fuel economy values. I discuss the construction of these
estimates in Appendix A.2.

• Carpooling: I divide carbon emissions by the number of carpoolers for individuals who
report carpooling.

• Emissions from public transportation: I assign emissions factors to commutes by
public transportation using estimates derived from the National Transit Database (NTD,
Federal Transit Administration 2002-2019). Specifically, for each transit agency and year,
I use reported data on fuel consumption and passenger miles traveled (PMT) by mode
in order to estimate carbon emissions per PMT for six possible modes of commuting:
subway or elevated rail, commuter rail, streetcar, bus, ferry, or taxi.22 As with residential
emissions, I assign fuel emissions factors using data from the U.S. Environmental Protection
Agency 2018 and I assign electricity emissions factors using average values at the North
American Electric Reliability Corporation (NERC) region level. After estimating mode-
specific emissions for all reporting transit agencies, I estimate passenger mile weighted mode

22. NTD modes of commute are more granular than ACS modes of commute. I group heavy rail, mono-
rail/automated guideway, light rail, and aerial tramway into the subway & elevated rail group. I treat commuter
rail and hybrid railroad as railroad. I group streetcar, cable car, inclined plane, and trolleybus into the streetcar
mode. Bus, bus rapid transit, and commuter bus all get categorized as bus. And lastly, I categorize demand
response, demand response taxis, and vanpools as taxi.
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emissions factors in each urban area, and assign individuals an emissions factor based on
the urban area they live in. For individuals who live outside of an urban area with a
reporting agency, I use their mode’s national annual average emissions per passenger miles
travelled to estimate emissions.

• Emissions from walking or biking: I assign zero emissions to commutes by walking or
biking. This underestimates emissions from biking as electric bikes (i.e. e-bikes) grow in
popularity. Unfortunately, I cannot distinguish in the ACS the kind of bikes commuters use,
and in the majority of my sample traditional bicycles dominated the market. An important
question for future research is how e-bike subsidies and local bike-share programs change
commute mode choice and emissions.23

• Commuting distance: I estimate commute mileage using the GPS distance between
reported home and place of work census blocks. To account for the fact that geodesic
distances don’t capture the indirect nature of roads, I re-scale my mileage estimates to
match the national average commuting distance, by mode, reported in the NHTS. For
individuals who only report their county of work but not their census block of work, I
impute miles traveled using reported commute time and average commute speeds for people
with similar residence-job geographic pairs. I use a similar imputation for individuals for
whom the travel speeds implied by dividing estimated miles by commute time are infeasible
– over 150 mph in a train,24 or over 80 mph on average in other modes.

• Number of annual commutes: I estimate commuting days per week using reported
hours worked last week and assuming people work eight hours a day up to five days a
week, assuming people worked five days if they worked 40-50 hours a week, 6 days if
they worked 50-60 hours in a week, and 7 days if they worked more than that. I assume
everyone commutes twice a day, and that commuting behavior is consistent across all the
weeks worked last year.

• Identifying children: I designate a household member a child and drop them from the
analysis sample if they are under the age of 18, or if they are identified as a child via the
Census’ relationship to householder code.

A.2 Measurement Error in Household Carbon Emissions

There are several sources of measurement error in household carbon emissions from residential
and transportation energy use. While an advantage of the ACS is that it makes observable many
household characteristics that are unobservable in standard administrative datasets on energy
use, making it possible to control for changes to household characteristics that are correlated
with both changes to energy demand and move propensity and destinations and decrease po-
tential bias from unobserved preference shocks, a disadvantage is that the survey nature of the
data means that the outcome variables are constructed from a combination of survey responses
(whose quality depends on household reporting) and local external data. This could introduce

23. Xu (2020) finds that bike commuting is more common in cities with bike share programs.
24. This is the fastest speed a train ever goes in the US, along a small segment of the Northeast Corridor.
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bias in either estimates of household and place effects, estimates of the variance components, or
both. Note that if errors are random but serially correlated within a household, both a naive
variance decomposition and a KSS variance decomposition on a sample consisting of both stayers
and movers will overstate the share of heterogeneity attributable to households; however, when I
restrict to the mover only sample, the KSS correction accounts for serial correlation in the error
term and gives unbiased estimates of variance components. Below, I discuss the various possible
sources of measurement error, as well as potential biases that arise in my estimates as a result.
In cases of greater concern, I discuss the construction of alternate variables used for robustness
checks in the paper.

Household reporting of residential energy expenditures

Households may not accurately report energy expenditures. Inaccurate reporting could
arise, for example, due to inattention to bills, or due to bias driven by the seasonality of energy
expenditures – that is, if households use their last monthly bill to proxy for annual expenditures.

If household inattention is fixed it will be absorbed by the household effect. If inattention
leads high types to overstate their expenditures, and low types to understate their expenditures,
this would lead to an upward bias in the household component of heterogeneity, and vice versa.
It is also reasonable to think that inattention may be random but serially correlated within
household.

With fixed or random inattention, estimates of place effects themselves are unbiased.
However, if moves are correlated with changes in attention, this could lead to bias in estimates of
place effects. For example, if households move after positive income shocks, and higher income
households pay less attention to their energy bills, and this inattention leads to systematic under-
or over-estimation of expenditures, estimates of place effects with more inattentive residents
would be biased.

Seasonality is unlikely to bias my estimates because surveys are sent out randomly, and
therefore the season households were surveyed shouldn’t be correlated with other components of
the model.

Electricity prices

In the baseline specifications, I estimate electricity prices from total utility revenues divided by
total utility customers, by county (using data from EIA Form 861). This introduces three sources
of measurement error in electricity prices.

First, in counties served by more than one utility, I cannot match customers to the actual
utility they are served by. If customers in an area can select their residential energy provider,
this could lead to bias in the household component of heterogeneity. For example, if higher
type customers are selecting into lower average price utilities, I will underestimate the household
component of heterogeneity. Similarly, if there are several utilities serving different neighborhoods
within the same county, this could lead to bias in the place component of heterogeneity. In
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particular, I will over-estimate consumption in neighborhoods served by more expensive utilities,
and under-estimate consumption in neighborhoods served by cheaper utilities. If more expensive
utilities generally serve lower consumption neighborhoods, this will lead me to underestimate the
place component of heterogeneity.

Second, residential customers generally face a two-part tariff consisting of a fixed charge
and a marginal volumetric charge, in which the marginal price can either be increasing or de-
creasing in consumption depending on the utility. Because I use average prices, calculated from
utility residential revenues and quantities sold, I overestimate the average volumetric price and
in turn underestimate consumption for everyone (more so for households in high fixed charge
service territories). Moreover, for some utilities, marginal prices are either increasing or decreas-
ing in consumption. When prices are increasing in consumption, I under-estimate prices faced
by high-demand customers and over-estimate prices faced by low-use customers. This means
I over-estimate quantities consumed by high-demand customers and under-estimate quantities
consumed by low-demand customers, leading to an upward bias in my estimates of the household
variance component. Conversely, if prices are decreasing in consumption, I underestimate the
household variance component.

Borenstein and Bushnell (2022) estimate that in the US, roughly 37 percent of customers
face increasing block pricing, and roughly 21 percent face decreasing block pricing, though in
all cases the rate structure is fairly narrow. They also estimate that across territories, utilities
that utilize increasing-block pricing generally serve lower demand customers on average. Thus,
my estimates likely somewhat over-estimate variation across households within utility territories,
and underestimate variation across territories. Overall, unobserved rate structures should lead
me to estimate a lower bound on place-based heterogeneity and estimate an upper bound on
preference-based heterogeneity.

Finally, residential rates can vary within utilities, and I don’t observe which rate a house-
hold has selected. This leads to the same biases as not being able to observe which utility a
customer chooses, discussed above. Additionally, I do not observe if a household has solar, and
in many states solar customers face different price schedules with significant subsidies for selling
generated power back to the grid. This lowers their average price per kilowatt hour (kwh), caus-
ing me to underestimate quantity consumed and in turn CO2 from electricity purchased from
the grid by these customers.

Alternate electricity price estimates for robustness checks

To test the sensitivity of my results to the issues described above, I construct several
alternate estimates of residential electricity prices.

First, I account for fixed charges, closely following Borenstein and Bushnell (2022) in my
approach. I supplement the EIA 861 data with annual data from the Utility Rate Database
(URDB), which contains utility-level data on rate schedules. I collect fixed charges from the
set of utilities in the URDB that report detailed retail pricing information, using the median
fixed charge in the standard tariff for each utility-state pair in cases in which utilities reported
multiple rates.
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The URDB is not perfectly populated, and is much sparser in the earlier years25. In
cases where I observe a fixed charge for some but not all years of a utility-state pair, I impute
values for missing years using values from the closest available year. If I observe two different
fixed charges with missing years in between, I impute the value for those missing years using the
mean of the observed values.

I then estimate the variable price component for each utility-state pair by combining
my fixed charge estimates with annual total revenue, generation, and customer data from the
EIA 861. I subtract estimated total fixed revenue (fixed charge times number of customers)
from total revenue reported in EIA 861, and then divide variable revenue by total sales to get a
variable price per kwh of electricity. Consistent with the fact that fixed charges are generally a
low share of the two-part tariff (I estimate that across my sample fixed charges make up roughly
9 percent of total revenues), the distributions of average and variable prices appear similar. I
proceed as in the baseline estimation, constructing a county-level average variable price as the
customer-weighted mean variable price of all utilities serving a given county. In the microdata,
for counties without a variable price estimate, I continue to use my average price estimate.

Second, I account for the fact that sometimes utility tariffs follow a tiered pricing schedule,
in which marginal prices either increase or decrease with the quantity of electricity consumed.
URDB also contains some information on price schedules with tiered pricing, but these data
are even more complex and sparse than the fixed charge data. I have no way of knowing which
customers choose a rate with tiered pricing, or even what share of customers are on each schedule.
To bound the issues that could arise from tiered pricing, I gather information on the mean price
difference between the top and bottom price for each utility-state-year. I do this separately for
tariffs with increasing block rates vs. decreasing block rates. As with the baseline and variable
price estimation, I estimate a county-level average price difference for increasing and decreasing
block prices. I then estimate top and bottom county-level prices as the variable price in that
county plus/minus half the price difference. I estimate the price step as being at the median
county level quantity consumed, as estimated using average variable price.

I then explore three bounding scenarios. In the first, I assume that every customer who
lives in a county where an increasing block price schedule is available chooses the increasing
block price schedule. In counties without any increasing block price schedules, customers are
assigned the average variable price. In the second, I make an analogous assumption but with
decreasing block prices. Finally, I consider a selected scenario, in which customers with below
median electricity costs for their county select into an increasing block pricing schedule, while
customers with above median electricity costs for their county select into a decreasing block
pricing schedule. Note, this selected scenario also yields some insight into the bias that would
arise from customers selecting across utilities based on price. While none of these perfectly
capture the actual price schedules faced by all customers in the data, they should provide some
bounds on the bias incurred by not accurately observing marginal prices.

Using estimated variable prices or assigning tiered pricing schedules to households does
not meaningfully impact variance component estimates (Table G.9).

25. Coverage of EIA 861 utilities goes from 16% in 2000 to 79% in 2019.

58



Electricity carbon emissions factors

I estimate the carbon emissions intensity of electricity using average emissions factors
at the NERC region. This does not capture the fact that electricity is generated from different
fuels throughout the course of the day (e.g., solar peaks in the afternoon) and across seasons
(e.g., there is less solar in the winter). The error in household carbon emissions that results from
this is likely serially correlated within household, and can be accounted for in the mover-only
KSS specification. However, if consumption profiles are also correlated with these patterns, my
estimates of household carbon emissions will be biased. For example, if low-type users consume
more electricity when marginal emissions are higher, then I would tend to under-estimate their
carbon emissions and over-estimate the household component of heterogeneity.

Alternate electricity emissions estimates for robustness checks

In the baseline specifications, I estimate household electricity emissions using average
emissions factors computed from aggregate production and fuel use at the NERC region level.
Conceptually, I believe that this is the right emissions factor to use because a change in the place
effect simultaneously affects all residents of the place, leading to non-marginal changes in elec-
tricity consumption. However, I also construct a measure of household electricity emissions using
marginal emissions factors. Note that this doesn’t address the issue of emissions varying across
hours and seasons and that variation possibly being correlated with usage patterns, because I
cannot distinguish differences in marginal emissions across households within a place.

I follow Borenstein and Bushnell (2022) and estimate marginal emissions for each of nine
regions – the eight reliability regions of the NERC, with the Western Interconnection (WECC)
region split into California and non-California sub-parts – by regressing hourly carbon emissions
on hourly load using the following specification

CO2it = βLoadit + αmn + γiLoadInterconnect−it + εt

where αmn represents month of sample by hour of day fixed effects and γi represents the marginal
effect of load from other parts of the interconnect onto carbon emissions in a given region.
Marginal emissions from electricity load in a region are then given by βi +

∑
j 6=i γj . In prac-

tice, allowing for the impact of other regions’ load on marginal emissions does not make a big
difference.

I construct hourly carbon emissions from power plants in each region using data from the
Environmental Protection Agency (EPA) Continuous Emissions Monitoring System (CEMS). I
extend estimates of hourly load from Cicala (2022) through 2019 using data from the Federal
Energy Regulatory Commission’s Form-714 Survey. In a few region-year pairs where supplemen-
tary data were required but unavailable, I interpolate region marginal emissions from the nearest
available year.

Using marginal emissions estimates to construct carbon emissions from electricity in-
creases the share of covariance attributable to places by about seven percentage points relative
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to baseline estimates (Table G.9).

Natural gas and other residential heating fuel prices and emissions

Many of the same price measurement errors arise with natural gas as with electricity, but
generally individuals have less choice over their utility, fixed charges are larger, and there is less
prevalence of block pricing. Unlike electricity, fuel emissions factors for other fuels are the same
regardless of where a household lives. However, in the case of natural gas a significant source of
emissions is upstream methane leaks, which I don’t consider in this analysis.

Assignment of heating fuel

I estimate carbon emissions from fuel use by assigning all expenditures on “other home
heating fuels” to the fuel reported as the primary fuel. If a household has non-zero other fuel
expenditures, but it doesn’t list a primary fuel, I impute its primary fuel based on the most
commonly used primary fuel among other survey respondents in their state and year (out of
residual oil, propane, and wood). If in reality households use more than one heating fuel, or use
a heating fuel other than the one I imputed for them, there will be error in my measurement
of carbon emissions, both as a result of dividing expenditures by the wrong fuel price, and as
a result of assigning the wrong carbon emissions factor. I will overestimate household carbon
emissions if reported or imputed fuel prices are lower than actual average fuel prices faced by
the household, or if reported or imputed fuel types have higher emissions factors than the fuels
actually used.

If I tend to overestimate carbon emissions from heating fuels for otherwise high-type
households and underestimate carbon emissions from heating fuels for otherwise low-type house-
holds, then my household variance component will be biased upward, and vice versa. Moreover,
if moves are correlated with shocks to unobserved fuel components, this could lead to bias in my
estimates of place effects. For example, if a household uses the same heating fuel everywhere they
live but doesn’t report this fuel, if they move to a place where their neighbors use an on average
higher emissions heating fuel, I would overestimate the place effect. In practice, the share of
households reporting non-zero energy expenditures on heating other than electricity or natural
gas is small, and my estimates are not meaningfully affected when I exclude other heating from
the calculation.

Commuting distances:

Because I estimate commute miles from geodesic distances between coordinates, I will
underestimate speed and miles traveled for individuals who have less direct commutes. If place-
based constraints (e.g., the result of living in a gated community or a neighborhood with many
winding roads and cul-de-sacs) shape the directness of a commute, and if these types of neigh-
borhoods tend to be farther from employment centers and have longer commutes to begin with,
then I will underestimate the place component of spatial heterogeneity.
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Additionally, I impute miles for the people for whom I don’t observe census block of work
using average mph for home and place of work county pairs. This will lead me to overstate
commute distances for people with slower than average commutes, and understate commute dis-
tance for people with faster than average commutes. If faster than average commutes are also
longer than average, then I will underestimate the household component of spatial heterogeneity.
The “Commute from hrs” rows in Table G.9 show that my estimates are not sensitive to using a
simpler measure of commute distance, calculated from simply dividing reported commute time
by the average national commute speed, 32 mph (Federal Highway Administration 2022), sug-
gesting that errors in commute speeds are unlikely to bias my estimates.

Total commuting miles:

I use weeks worked last year to estimate total commuting from typical commuting be-
havior last week. This assumes that hours worked are stable, that people work at the same
place all year, and that information about commutes reported for last week is representative of
commutes generally. Any deviations along these dimensions introduces measurement error into
my outcome. While such errors are more likely to arise for lower income households with less job
stability, it is unlikely that it results in a systematic over- or under-estimate of commute miles
on average.

Indeed, the results in the “Commute from hrs, fixed num.” row in Table G.9 are qualita-
tively similar to the baseline estimates.

Commuting emissions:

I assume everyone drives a vehicle with the annual national average fuel economy, using
data from the NHTS. This is a significant oversimplification – and my inability to observe fuel
economy is a significant limitation of my data – as it ignores patterns of heterogeneity in fuel
economy both across commute lengths and across regions. If people with longer commutes
drive more fuel efficient vehicles, I will overstate heterogeneity. On the other hand, if people
who want to conserve on gas both buy more fuel efficient vehicles and choose to have shorter
commutes, I will understate heterogeneity. The bias in my estimates of relative shares is more
ambiguous. As with my broader analysis, there is a question of whether regional patterns in fuel
economy are driven by individual preferences or place-based differences. If regional variation in
fuel economy is driven by individual preferences, I will understate the relative importance of the
person component in spatial variation. On the other hand, if they are driven by local norms or
place characteristics such as, for instance, the availability of parking and width of roads, I will
understate the relative importance of the place effect.

Additionally, if households change their mode of transit over the year, or if they use
multiple modes of transit in a single commute, I do not capture this variation. For example, if
households report taking public transit as their primary mode, but in reality they drive part of
the distance of their commute, I will under-estimate their carbon emissions and overstate overall
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heterogeneity. On the other hand, if they walk or bike part of the distance of their commute, I
will overestimate these household’s carbon emissions and understate overall heterogeneity.

Allowing for heterogeneous vehicle fuel economy

In the baseline specification, I assign a national average fuel economy to all households.
To explore the sensitivity of my results to this assumption, I construct three estimates of fuel
economy using data from the NHTS, allowing for heterogeneity across geographic characteristics
(CBSA, state, urbanity) only, individual and household characteristics (age, race, household size,
household income, gender, number of vehicles, and commute mode of transit interacted with
commute length) only, and both sets of characteristics. For each specification, I use a penalized
Lasso regression to predict individual-level vehicle fuel economy based on the included set of
characteristics, and then I use these estimates of mpg to estimate emissions from commuting.

Results are presented in the three "MPG" rows of Table G.9, and are not qualitatively
different from baseline estimates.

Non-commuting transportation emissions:

I don’t observe transportation other than commuting. In particular, I don’t observe local
travel for errands or leisure, nor do I observe airplane travel. Thus, I (weakly) underestimate
carbon emissions magnitudes. If commuting is a rank-preserving share of total transportation
emissions, my results will be qualitatively correct but off in magnitudes. However, if for exam-
ple places with long commutes have lower other transportation emissions (because everybody
spends leisure time in their back yard) whereas places with short commutes have higher other
transportation emissions (because people go away for the weekend), then my estimates cannot
be used to infer anything about heterogeneity in overall transportation emissions.

Estimating total vehicle miles traveled

In the baseline specification, miles commuted serve as a proxy for total vehicle miles. To
explore the sensitivity of my results to this assumption, I also construct an estimate of total
miles traveled by using a penalized Lasso regression to predict total miles from the set of both
household and geographic variables described above in the NHTS data. Table G.9 shows that
this does not meaningfully affect the results.
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B The Leave-One-Out Connected Set

Consider the following data:

Individual & Household Geographic Locations

Year Household Place

1 1 NY
2 1 CHI
1 2 CHI
2 2 NY
1 3 SF
2 3 CHI

Household 1 moves from NY to Chicago, household 2 moves from Chicago to NY, and
household 3 moves from San Francisco to Chicago. This data can be visualized as a network,
where each place is a node, each household is a node, and edges connect households to each place
they’ve lived in.

Household + Place Network

CHISF NY

H1

H2

H3

In this figure, San Francisco, Chicago, and New York are all connected by movers – this
is a connected set. The leave-out connected set is the set of places that remains connected after
dropping any household from the data. In this example, San Francisco is not in the leave-out
connected set, because it is only connected to the rest of the network through H3.
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C Empirical Bayes Adjustment

When discussing distributions of either observational means or place effects, I account for the
fact that these parameters are noisily estimated by using linear Empirical Bayes, i.e. a shrinkage
estimator. Many papers in the public and labor literatures have used this approach to predict
for example teacher value add or neighborhood effects in other contexts (Chetty, Friedman, and
Rockoff 2014a; 2014b; Angrist et al. 2017; Chetty and Hendren 2018; Finkelstein, Gentzkow, and
Williams 2021; Abaluck et al. 2021). Although the linear approximation only corresponds to
the true Empirical Bayes posterior when errors are normal and homoskedastic, Kline, Rose, and
Walters (2021) show that even when errors are heteroskedastic, the linear shrinkage estimator
doesn’t do much worse than non-parametric Empirical Bayes. The shrinkage estimates are given
by:

ŷEBj = λj ŷj + (1− λj)
1

J

∑
j

ŷj (10)

where y represents the neighborhood-level parameter of interest, and the weights λj =
σ̂2
j

s2j+σ̂
2
j

capture the signal-to-noise ratio of each estimate and down-weight noisy estimates to the grand
mean.
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D Model

Household i, living in place j, consumes quantity Q of energy in the form of four types of fuels:
electricity (e), natural gas (n), other heating fuels (o), and motor gasoline (m). Each of these
fuels has an emissions factor φ(jt); these factors vary over time and place for electricity but are
fixed along both of these dimensions for the other three fuel types. Household carbon emissions
are therefore given by the following expression, with it subscripts temporarily supressed for easier
legibility:

CO2 = φejt ·Qe + φn ·Qn + φo ·Qo + φm ·Qm

Note that it is possible to re-express the above in terms of fuel shares, where for each fuel

sf =
Qf∑
f Q

f

And therefore

CO2 =

(∑
f

sf · φf(jt)

)
·Q

where, as before, Q represents total energy consumption across the four fuels.

Returning to Equation 3

lnQit = aj +
∑
f∈F

ρfj · lnP
f
j +Xitβ + τt + αi + εit

it follows that

lnCO2it = ln

(∑
f

sfit · φ
f
(jt)

)
+ aj +

∑
f∈F

ρfj · lnP
f
j +Xitβ + τt + αi + εit

I add and subtract log of the average emissions factor, φ̄j , which I used in the simplified exposition
of the model in Equation 4, and rearrange terms to get the following expression:

lnCO2it = ln φ̄j + aj +
∑
f∈F

ρfj · lnP
f
j +Xitβ + τt + αi + εit + ln

(∑
f s

f
it · φ

f
(jt)

φ̄j

)

Observe that if not for the last term, this expression would be equivalent to Equation 4, but
when household fuel shares vary, there is an interaction between household fuel shares relative
to the average in the place where it lives, and place specific electricity emissions intensities. A
household that disproportionately uses electricity wherever it lives will have a larger drop in
emissions when moving from a place with relatively dirty electricity to a place with relatively
clean electricity than the average household will. This variability gets absorbed by the error
term in my regressions, and motivates the use of heteroskedastic errors.
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E Computational Appendix

This section closely follows the description provided in KSS, as I replicate their method. I
proceed in two steps, regressing log(CO2) on observable characteristics and year fixed effects,
and residualizing so that I am left with

ỹij = αi + ψj + εit

The share of overall variance attributable to place effects can then be captured by the
variance component of place effects,

V ar(ψj) ≡ σ2ψ =
1

NT

N∑
i=1

T∑
t=1

(ψj(i,t) − ψ̄)2

and the covariance component between place effects and person effects

Cov(αi, ψj) ≡ σ2α,ψ =
1

NT

N∑
i=1

T∑
t=1

(ψj(i,t) − ψ̄) · αi

KSS provides an estimate for the standard error ψ2
i = V ar(εi) based on a leave out

estimate of σ2i :

σ̂2i = yi(yi − x′iβ̂−i) = yi
(yi − x′iβ̂)

1− Pii
where Pii = x′i(xix

′
i)
−1xi is the observation leverage.

To reduce the computational burden of the KSS estimator, I use the Johnson-Lindenstrauss
approximation (JLA) algorithm introduced by KSS to estimate the statistical leverages of each
match, i.e. the amount by which estimates change when leaving out the match. KSS show
that using JLA introduces an approximation error of roughly 10−4 relative to estimating statis-
tical leverages directly. See KSS for a complete discussion of the leave-out estimator and JLA
algorithm.
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F The Evolution of Place Effects

Time-varying fixed effects:

I provide descriptive evidence on the changing nature of place effects from 2000-2019
in Appendix Figure G.8. Pooling all time-varying fixed effect estimates together and grouping
pooled values into four quartiles, the vast majority of CBSAs either do not change rank or be-
come lower emissions from the first period (2000-2004) to the last period (2015-2019), consistent
with large declines in emissions from electricity production as a result of a dramatic decline in
coal and increase in renewables (U.S. Energy Information Administration 2020a). In contrast,
defining quartiles within year, the distribution of whether CBSAs become relatively lower or
higher emissions than their counterparts between those two periods is roughly symmetric, but
with over half of CBSAs not changing relative rank.

The impact of the COVID-19 pandemic:

There was likely a discontinuous change in CBSA effects following the COVID-19 pan-
demic and the shift to remote work, which was accompanied by a steep decline in commuting and
a shift towards larger homes to accommodate home offices (Van Nieuwerburgh 2023; D’Lima,
Lopez, and Pradhan 2022). Cicala (2023) finds that during the acute parts of the pandemic
(Q2-Q4 of 2020), residential energy consumption increased by about eight percent, while the
use of transportation fuel consumption declined by about 16 percent. The resulting increase in
residential energy is likely to widen the gap in place effects between suburban and urban tracts,
though the net impact on emissions should be modulated by the decrease in commercial energy.
In contrast, the reduction in commuting is likely to decrease the gap between suburban and
urban tracts. It is a limitation of my data that I only observe commuting miles, but in my
sample time frame, using the NHTS to predict overall transportation from commuting does not
substantively change the results. In the COVID-era this data limitation becomes prohibitive
as commuting and overall transportation miles become completely disentangled. Finally, it is
worth noting that while initially it seemed like there might be a permanent structural shift to
remote work and a decline of cities (e.g. Gupta et al. 2022), as of 2024 it appears that many
employers are requiring workers to return to the office (e.g. Resume Builder 2023), calling into
question whether the pandemic will have had a long-term impact on cities. The net effect of all
these countervailing forces, and the extent to which they result in a permanent, structural shift
in place effects, is an empirical question which this paper does not have enough data to address
at this time, but is an important avenue for future research.
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G Additional Figures and Tables

G.1 Additional Figures

Figure G.1: Heterogeneity in Household Carbon Emissions
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Note: This figure shows Kernel Density estimates, using a Gaussian kernel function, of de-meaned household
carbon emissions. Household carbon emissions are censored at the top and bottom 1% of observations in order
to abide by Census Disclosure Avoidance rules. The dotted gray line labeled “Without Controls” corresponds to
the distribution of log CO2 conditional on year FEs only, and has a standard deviation of 0.59, while the solid
line labeled "With Controls" conditions on observable household characteristics, and has a standard deviation of
0.52. Observable characteristics include age, gender, race, ethnicity, education, home owner status, household
income, household size, and number of children.
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Figure G.2: CO2 Profiles by Demographic Characteristics (1/4)

(a) Gender (b) Education

(c) Race (d) Ethnicity

Note: This figure shows variation in household carbon emissions by household member demographics. Panel
(a) shows that households with more women (age 18+) have slightly lower emissions (consistent with women
having fewer and shorter commutes). Panel (b) shows that college educated households have slightly lower
emissions. Panel (c) and (d) show large differences by race and ethnicity – white households and non-Hispanic
households have higher emissions on average than non-white and Hispanic households. All estimates reflect the
full sample, pooled 2000-2019, weighted by Census sample weights.
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Figure G.3: CO2 Profiles by Demographic Characteristics (2/4)

(a) Age

(b) Income Decile

Note: This figure shows variation in household carbon emissions by household member age and household
income deciles. Panel (a) shows a non-linear relationship between the adult age of household members and mean
carbon emissions which increases through people’s 40s and then decreases again (likely reflecting a combination
of higher incomes and children still being in the home). Panel (b) shows an increasing relationship between
household income decile and carbon emissions. All estimates reflect the full sample, pooled 200-2019, weighted
by Census sample weights. Household income is CPI-adjusted.
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Figure G.4: CO2 Profiles by Demographic Characteristics (3/4)

(a) Household Size

(b) Number of Kids

Note: This figure shows variation in household carbon emissions by household size (a) and number of children
(b). Carbon emissions increase with household size and with the number of children, but less than
proportionally, and the increase is fairly small going from 4 to 5+ people, or 2 to 3+ kids. All estimates reflect
the full sample, pooled 200-2019, weighted by Census sample weights.
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Figure G.5: CO2 Profiles by Demographic Characteristics (4/4)

(a) Home Ownership

Note: This figure shows variation in household carbon emissions by homeowner status, highlighting that renters
have lower emissions on average than homeowners. All estimates reflect the full sample, pooled 200-2019,
weighted by Census sample weights.
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Figure G.6: Energy Expenditures in Mover Households in the PSID

(a) Households with higher expenses after move

(b) Households with lower expenses after move

Note: I examine whether there are pre-trends in energy consumption for movers using data from the PSID,
given data limitations in my baseline data. In particular, I test whether there are significant changes to monthly
energy expenses (residential energy bills + gasoline expenses) in the years prior to a move, after controlling for
household size, income, head of household age, and year fixed effects. Because I do not observe where
households move to, I examine households who spend more on average after moving and households who spend
less on average after moving separately. Neither group exhibits pre-trends.
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Figure G.7: Event study by duration – CBSA
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Note: This figure shows event study estimates of the share of spatial variation in mean carbon emissions that
can be explained by place effects, by duration between mover observations. In other words, each coefficient is
the estimate for place effects generated from the sub-sample of households that I observe X years apart.
Coefficients plotted in light gray circles are estimated from the model using the entire sample of movers.
Coefficients plotted in the dark blue diamonds are estimated from the model using the sub-sample of movers
with no change in the number of children, a less than 0.5 log point change in household income, and no change
in home-ownership status between observations. All estimates are weighted using Census sample weights.
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Figure G.8: Changes in Time-Varying CBSA Effect Ranks

Note: This figure shows the distribution of rank changes in time varying CBSA effects from the 2000-2004
period to the 2015-2019 period. The dark blue bars show changes in pooled quartiles, while the light blue bars
show changes in within-year quartiles.
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Figure G.9: Place Effects vs. Household Carbon Emissions

(a) CBSA
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(b) Tract
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Note: This figure shows event study estimates of the share of spatial variation in mean carbon emissions that
can be explained by place effects, by size of origin-destination differences in the KSS estimates of place effects.
The two sets of points compare the full sample of movers (solid light grey circle) to the sub-sample of movers
with no change in the number of children, a less than 0.5 log point change in household income, and no change
in home-ownership status between observations (empty dark blue diamond). The dotted black line shows the
45°line. All estimates are weighted using Census sample weights.
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Figure G.10: Correlates of Unobserved Household Heterogeneity

(a) Bivariate Regressions (b) Single Regression

Note: This figure presents estimates from OLS regressions of estimated tract effects on a set of observable
place-based and household characteristics. Panel (a) shows results from separate bivariate regressions, while
panel (b) shows results from a single regression on all covariates. All amenity variables are tract level means,
normalized to have mean zero and standard deviation one, except the rural and suburban indicators, which are
retained as indicators. Regressions are weighted using ACS sample weights.
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G.2 Additional Tables

Table G.1: Summary Statistics for Sample Dropped Due to Missing Energy Info

Full Panel Mover

(1) (2) (3) (4) (5) (6) (7)
Elec Gas Gas

All in Rent in Rent in Elec. All CBSA Tract

A: Demographics

College 0.31 0.21 0.28 0.33 0.33 0.41 0.36
Age 42 40 39 43 44 40 41
White 0.72 0.67 0.68 0.74 0.83 0.83 0.81
Female 0.48 0.46 0.48 0.48 0.48 0.45 0.48
Household Income 85,010 51,800 65,310 98,860 100,800 102,700 100,100
Household Kids 0.9 0.7 0.6 1.0 0.9 0.9 0.9
Household Size 2.6 2.2 2.1 2.8 2.7 2.7 2.6
Homeowner 0.47 0.10 0.16 0.67 0.65 0.53 0.55

B: Outcomes

Tons CO2 - Commute 2.5 1.7 1.8 3.0 2.6 2.7 2.5

C: Intermediate Outcomes

Detached Home 0.44 0.15 0.08 0.65 0.60 0.54 0.52
Use Electricity Only 0.04 0.24 0 0 0.09 0.14 0.12
Commute by Car 0.83 0.70 0.70 0.89 0.88 0.88 0.88
Commute Minutes 25.4 23.9 25.4 25.7 25.0 25.0 25.5

D: Place Characteristics

Urban 0.34 0.44 0.47 0.28 0.26 0.25 0.28
Suburban 0.18 0.15 0.19 0.18 0.15 0.12 0.15
Rural 0.48 0.41 0.34 0.54 0.59 0.64 0.57
Walk Score 46.1 53.8 59.3 40.2 38.3 36.2 39.7
Bike Score 47.5 52.3 55.6 43.8 43.2 43.5 44.5
Transit Score 18.8 23.7 26.6 15.2 14.4 14.0 15.9
N Bus Routes 4.7 6.9 7.9 3.3 3.5 3.5 3.8
N Rail Routes 0.93 1.24 1.84 0.54 0.63 0.55 0.65
Cooling Degree Days 947 1,110 924 919 932 1,062 983
Heating Degree Days 5,028 4,754 5,236 4,993 5,272 5,021 5,151

N People 1,810,000 389,000 722,000 980,000 165,000 24,500 68,000
N Households 1,410,000 322,000 593,000 721,000 272,000 44,500 121,000
CBSAs 1,000 1,000 1,000 950 950 950 950
Tracts 68,500 53,000 56,500 55,000 49,000 26,000 43,000

Note: This table shows summary statistics for households dropped from the analysis as a result of having their
electricity bills included in rent, their natural gas bills included in rent, or their natural gas bills included in
their electricity bills. Column (1) shows statistics for the entire set of households who would’ve been in the full
sample but got dropped for any one of those three reasons. Columns (2)-(4) show summary statistics broken out
by group. Column (5) shows summary statistics for the sub-sample of column (1) who would’ve been in the
panel sample if not for these unobserved bills, and columns (6) and (7) show households who would have been in
the mover sample. All statistics are weighted by ACS household weights.
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Table G.2: Panel Statistics for Sample Dropped Due to Missing Energy Info

Movers

(1) (2) (3)
Panel CBSA Tract

A: Sample Characteristics

First Observed in 2000 0.08 0.13 0.12
Years Between Observations 8.6 10.4 9.9

B: Demographic Characteristics

Age First Observed 40.6 34.8 35.9
Share with Large Change in Income 0.43 0.62 0.56
Share with Change in N Kids 0.44 0.51 0.51
Change in N Kids 0.03 0.30 0.23
Share Rent to Own 0.22 0.39 0.38

C: Mover Place Changes

∆ Walk Score -7.8 -7.7
∆ Bike Score -5.1 -4.9
∆ Transit Score -2.7 -3.6
∆ N Bus Routes -0.96 -1.22
∆ N Rail Routes -0.06 -0.15
∆ Tract Share Detached Home 0.07 0.08

% Moves Urban-to-Urban 0.19 0.28
% Moves Urban-to-Suburban 0.22 0.21
% Moves Suburban-to-Suburban 0.34 0.32

∆ Cooling Degree Days 146 122
∆ Heating Degree Days -265 -159

N People 165,000 24,500 68,000
N Households 142,000 22,000 60,000
CBSAs 950 950 950
Tracts 49,000 26,000 43,000

Note: This table shows panel statistics for households dropped from the main analysis as a result of having
their electricity bills included in rent, their natural gas bills included in rent, or their natural gas bills included
in their electricity bills. The Column (1) shows statistics for households who would have been in the panel if not
for unobserved billing information, while Columns (2)-(3) show statistics for households who would have been in
the mover sample. All statistics are weighted by ACS household weights.
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Table G.3: Mean CO2 – Movers vs. Stayers

CBSA Panel Tract Panel

(1) (2) (3) (4) (5) (6) (7) (8)

Mover -0.07*** -0.05*** -0.11*** -0.08***
(0.001) (0.001) (0.001) (0.001)

Mover x Orig. -0.12*** -0.05*** -0.08*** -0.04***
(0.002) (0.002) (0.001) (0.001)

Mover x Dest. -0.04*** -0.04*** -0.03*** -0.03***
(0.001) (0.001) (0.001) (0.001)

Cons. 2.64*** 2.58*** 2.64*** 2.59*** 2.67*** 2.61*** 2.65*** 2.61***
(0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.000) (0.000)

Controls No Yes No Yes No Yes No Yes
Note: This table compares household carbon emissions for movers and stayers. Columns (1)-(2) and (5)-(6)
compare movers overall to stayers overall, with and without controls. Movers have lower carbon emissions than
stayers, with a slightly less pronounced difference after controlling for differences in income and other
demographic characteristics. Columns (3)-(4) and (7)-(8) present within-comparisons of stayers and movers
within a given place. The “Mover x Orig." coefficient compares movers with stayers at their origin, while the
“Mover x Dest." coefficient compares movers with stayers at their destination. Movers have lower emissions than
stayers at both their origin and their destination. The origin difference looks more pronounced in the
specifications without controls, but is effectively the same as the destination difference after controlling for
observable household characteristics. All estimates are weighted by ACS household sample weights.
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Table G.4: Probability of Moving

(1) (2)
Moved CBSA Moved Tract

Decrease in Kids 0.02*** 0.05***
(0.001) (0.001)

Increase in Kids 0.06*** 0.18***
(0.001) (0.001)

Large Decrease in Income 0.06*** 0.13***
(0.001) (0.001)

Large Increase in Income 0.09*** 0.16***
(0.001) (0.001)

Rent → Own 0.16*** 0.48***
(0.001) (0.002)

Constant 0.06*** 0.19***
(0.000) (0.001)

R2 (adj.) 0.05 0.17
Note: This table shows that households with a change in the number of children at home, a larger than 0.5 log
point change in income, or who go from renting to owning are much more likely to move than stay. This is most
pronounced for households who go from renting to owning their home, and is also more pronounced for positive
changes in children or income than negative changes. All estimates are weighted by ACS household sample
weights.
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Table G.5: Mover Origin and Destination Types

(a) CBSA Movers

To Rural To Suburban To Urban Total Share

From Rural 0.03 0.09 0.01 0.13

From Suburban 0.07 0.44 0.09 0.60

From Urban 0.01 0.17 0.08 0.26

Total Share 0.11 0.50 0.18 1.00

(b) Tract Movers

To Rural To Suburban To Urban Total Share

From Rural 0.03 0.06 0.01 0.10

From Suburban 0.05 0.46 0.09 0.60

From Urban 0.01 0.17 0.14 0.32

Total Share 0.09 0.69 0.24 1.00
Note: This table shows shares of origin-destination tract types for CBSA movers (panel (a)) and tract movers
(panel (b)). The most common type of move, for both CBSA and tract movers, is from a suburban tract to
another suburban tract. Moves between urban and rural tracts are exceedingly uncommon. All estimates are
weighted by ACS household sample weights.
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Table G.6: Event Study – with Climate and Electricity Emissions Controls

CBSA Tract

(1) (2) (3) (4)

A: Panel Sample
Place share of mean difs. 0.86*** 0.70*** 0.60*** 0.54***

(0.007) (0.012) (0.003) (0.004)

N 1,764,000 1,764,000 1,710,000 1,710,000
R2 (adj.) 0.75 0.75 0.76 0.77

B: Mover Sample
Place share of mean difs. 0.85*** 0.68*** 0.57*** 0.51***

(0.009) (0.014) (0.004) (0.004)

N 191,000 191,000 508,000 508,000
R2 (adj.) 0.70 0.71 0.73 0.73

Household controls X X X X
Climate & electricity controls X X

Note: This table reports event study estimates of the place share of spatial heterogeneity in household carbon
emissions. The place share estimate (θ̂) represents the proportion of differences in average carbon emissions (ȳ)
between a mover’s origin and destination attributable to place effects. Panel A reports estimates from the panel
sample, while panel B restricts the sample to movers only, allowing for systematic differences between movers
and stayers. Columns (1) and (3) replicate the baseline analysis presented in Table 3. Columns (2) and (4) add
controls for mean heating degree days, mean cooling degree days, and mean electricity emissions factors. All
estimates use Census sample weights.
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Table G.7: Place-Based Heterogeneity in CO2 – Climate vs Electricity Emissions

CBSA Tract

(1) (2) (3) (4) (5) (6) (7) (8)

Panel Sample

Variance of log(CO2) 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31

Share attributable to places 0.163 0.146 0.080 0.074 0.228 0.217 0.151 0.152
Share attributable to hhs 0.496 0.496 0.494 0.494 0.363 0.362 0.362 0.361
Corr. of place and hh effects 0.013 0.036 -0.003 0.027 0.016 0.070 0.024 0.081

SD of place effects 0.23 0.21 0.16 0.15 0.26 0.26 0.22 0.22

Mover Sample

Variance of log(CO2) 0.35 0.35 0.35 0.35 0.33 0.33 0.33 0.33

Share attributable to places 0.140 0.125 0.046 0.039 0.218 0.220 0.145 0.155
Share attributable to hhs 0.136 0.129 0.160 0.156 0.099 0.098 0.102 0.101
Corr. of place and hh effects 0.073 0.102 0.048 0.084 0.084 0.160 0.084 0.161

SD of place effects 0.22 0.21 0.13 0.12 0.27 0.27 0.22 0.23

Climate X X X X
Electricity CO2 X X X X

Note: This table reports KSS estimates of variance components, deliniating between the contribution of local
climate conditions vs the contribution of local electricity emissions factors. All specifications include
demographic and household controls as well as time fixed effects. To ease comparison, Columns (1) and (5)
replicate baseline estimates shown in columns (1) and (5) of Table 4, while columns (4) and (8) of this table
replicate estimates accounting for the contribution of both climate and electricity emissions factors
simultaneously (i.e. columns (2) and (6) of Table 4). Columns (2) and (6) of this table show estimates
accounting for just the role of climate in the variance components, while Columns (3) and (7) show estimates
accounting for just the role of electricity carbon emissions. All estimates are weighted by ACS household
sampling weights.
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Table G.8: Place-Based Heterogeneity in CO2 – No Bias Correction

CBSA Tract

(1) (2) (3) (4) (5) (6) (7)

Panel Sample

Variance of log(CO2) 0.31 0.31 0.31 0.31 0.31 0.31 0.31

Share attributable to places 0.175 0.086 0.090 0.188 0.523 0.449 0.453
Share attributable to hhs 0.558 0.554 0.554 0.557 0.748 0.747 0.746
Corr. of place and hh effects -0.026 -0.028 -0.027 -0.026 -0.417 -0.429 -0.427

SD of place effects 0.23 0.16 0.17 0.24 0.40 0.37 0.37

Mover Sample

Variance of log(CO2) 0.35 0.35 0.35 0.33 0.33 0.33

Share attributable to places 0.153 0.051 0.053 0.461 0.399 0.403
Share attributable to hhs 0.505 0.502 0.502 0.582 0.581 0.581
Corr. of place and hh effects 0.008 -0.008 -0.005 -0.291 -0.298 -0.294

SD of place effects 0.23 0.13 0.14 0.39 0.36 0.37

Climate + Electricity CO2 X X X X
Price Index X X
Time-Varying FEs X

Note: This table reports results from the biased AKM estimation of variance components. All specifications
include demographic and household controls as well as time fixed effects. Columns (1) and (5) report the
baseline variance decompositions at the CBSA and tract levels. Columns (2) and (5) add controls for local mean
heating degree days, cooling degree days, and electricity emissions factors (all in logs). Columns (3) and (6)
additional control for a price index, constructed from lagged fuel shares interacted with national retail prices.
Finally, column (4) computes time-varying CBSA place effects using 5-year windows (2000-2004, 2005-2009,
2010-2014, and 2015-2019), using stayer observations across time windows to identify time variation in place
effects, while movers, as before, identify cross-sectional variation. All estimates are weighted by ACS household
sampling weights.
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Table G.9: Place-Based Heterogeneity in CO2 – Alternate Outcome Definitions

CBSA Tract

V(y) S(ψj) S(αi) corr. V(y) S(ψj) S(αi) corr.

Panel Sample

Baseline 0.31 0.163 0.496 0.013 0.31 0.228 0.363 0.016

Electricity Emissions Estimates

Marginal Emissions 0.34 0.236 0.470 -0.016 0.337 0.295 0.343 -0.011
Variable Prices 0.33 0.155 0.498 0.018 0.321 0.218 0.363 0.026
Decreasing Block Prices 0.35 0.150 0.503 0.016 0.341 0.216 0.373 0.011
Increasing Block Prices 0.31 0.186 0.480 0.013 0.303 0.246 0.345 0.033
Selected Block Prices 0.32 0.159 0.500 0.014 0.311 0.220 0.366 0.024

Transportation Emissions Estimates

Commute from hrs 0.29 0.160 0.487 0.015 0.287 0.206 0.367 0.024
Commute from hrs, fixed num. 0.29 0.168 0.487 0.009 0.286 0.213 0.366 0.020
MPG from NHTS (dem. only) 0.32 0.169 0.495 0.008 0.313 0.235 0.365 0.006
MPG from NHTS (geo. only) 0.32 0.173 0.493 0.011 0.313 0.240 0.363 0.007
MPG from NHTS 0.32 0.174 0.490 0.011 0.312 0.238 0.360 0.010
Total Transportation from NHTS 0.20 0.177 0.468 0.037 0.200 0.218 0.376 0.015

Mover Sample

Baseline 0.35 0.140 0.136 0.073 0.333 0.218 0.099 0.084

Electricity Emissions Estimates

Marginal Emissions 0.39 0.219 0.136 0.004 0.378 0.281 0.094 0.025
Variable Prices 0.36 0.133 0.135 0.077 0.349 0.209 0.100 0.088
Decreasing Block Prices 0.39 0.131 0.136 0.069 0.372 0.207 0.105 0.062
Increasing Block Prices 0.34 0.161 0.137 0.067 0.329 0.240 0.097 0.091
Selected Block Prices 0.35 0.138 0.134 0.073 0.336 0.211 0.097 0.086

Transportation Emissions Estimates

Commute from hrs 0.32 0.142 0.132 0.070 0.310 0.202 0.101 0.089
Commute from hrs, fixed num. 0.32 0.149 0.132 0.063 0.309 0.210 0.099 0.075
MPG from NHTS (dem. only) 0.36 0.145 0.138 0.070 0.341 0.221 0.102 0.077
MPG from NHTS (geo. only) 0.36 0.150 0.138 0.076 0.341 0.227 0.100 0.083
MPG from NHTS 0.35 0.150 0.138 0.075 0.341 0.225 0.097 0.089
Total Transportation from NHTS 0.21 0.169 0.171 0.0772 0.207 0.214 0.118 0.0862

Note: This table reports KSS estimates of variance components, using a variety of different outcome definitions
to test robustness of the baseline estimates. Estimates are reported for both the full panel sample (top half of
table) and the mover only sample (bottom half of table). Each outcome definition is a row in the table, with
baseline estimates replicated in the first row of each sample to ease comparability. Outcome variants are
grouped into two categories: one which impacts residential carbon emission estimates, and one which estimates
transportation emissions estimates. Overall variance of the outcome, the share attributable to place effects, the
share attributable to person effects, and the correlation between place and household effects are reported at the
CBSA level in columns (1)-(4), respectively, and at the tract level in columns (5)-(9). All estimates are weighted
by ACS household sampling weights.
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Table G.10: Place Correlates w/ Observable Characteristics

College Age > 40 Non-white HH Income Has Kids Homeowner

Density -0.002* 0.004*** 0.006*** 0.033*** 0.017*** 0.005***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Suburban 0.014*** 0.005*** -0.025*** 0.015*** -0.010*** -0.005***
(0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

Rural 0.001 0.009*** -0.025*** -0.028*** -0.019*** -0.001
(0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

Walk Score 0.002* 0.006*** -0.022*** 0.025*** 0.007*** -0.021***
(0.001) (0.001) (0.001) (0.002) (0.002) (0.001)

Bike Score 0.025*** -0.011*** -0.004*** 0.027*** -0.006*** -0.006***
(0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

Transit Score 0.006*** 0.004*** 0.027*** 0.030*** -0.007*** 0.006***
(0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

CDD -0.015*** 0.000 -0.063*** -0.044*** 0.003 0.025***
(0.001) (0.001) (0.001) (0.002) (0.002) (0.001)

HDD -0.030*** -0.003*** -0.103*** -0.070*** -0.012*** 0.033***
(0.001) (0.001) (0.001) (0.002) (0.002) (0.001)

Elec. CO2 -0.018*** -0.020*** 0.008*** -0.062*** -0.010*** -0.004***
(0.001) (0.000) (0.001) (0.001) (0.001) (0.000)

N Rail Routes 0.007*** 0.002*** -0.012*** 0.036*** 0.002 0.010***
(0.001) (0.000) (0.001) (0.001) (0.001) (0.000)

N Bus Routes 0.016*** -0.003*** -0.012*** 0.016*** -0.013*** 0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Detached Home -0.043*** 0.009*** -0.000 -0.085*** 0.013*** 0.047***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

N Rooms 0.121*** 0.055*** -0.004*** 0.309*** 0.032*** 0.071***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

N Vehicles -0.036*** 0.017*** -0.055*** 0.076*** 0.043*** 0.041***
(0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

Dist. Closest City -0.013*** -0.005*** -0.011*** -0.041*** -0.000 0.001
(0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

Dist. Largest City 0.005*** 0.012*** 0.010*** 0.064*** 0.007*** 0.007***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Constant 0.25*** 0.63*** 0.14*** 11.29*** 0.53*** 0.78***
(0.000) (0.000) (0.001) (0.001) (0.001) (0.000)

Adj. R2 0.451 0.465 0.326 0.643 0.155 0.767
Note: This table reports correlation coefficients between tract-level mean observable household characteristics
and a detailed vector of observable place characteristics. All estimates are weighted by ACS household sampling
weights.
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Table G.11: 10 most populous CBSAs (2020)

Rank CBSA

1 New York-Newark, NY-NJ-CT-PA
2 Los Angeles-Long Beach, CA
3 Chicago-Naperville, IL-IN-WI
4 Dallas-Fort Worth, TX-OK
5 Houston-The Woodlands, TX
6 Washington-Baltimore-Arlington, DC-MD-VA-WV-PA
7 Philadelphia-Reading-Camden, PA-NJ-DE-MD
8 Miami-Port St. Lucie-Fort Lauderdale, FL
9 Atlanta-Athens Clarke County-Sandy Springs, GA-AL
10 Boston-Worcester-Providence, MA-RI-NH-CT

This table presents the ten most populous CBSAs as of 2020, which are used in the analysis
evaluating how overall emissions would change under different distributions of place effects.
Source: U.S. Census Bureau (2024)
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